sam.nitk.ac.in

nitksam@gmail.com

Concrete Mathematics - MA 201 Problem Sheet - 2

- 1. Verify that the following are equivalent :
 - (a) The *n*th line (for $n \ge 0$) increases the number of regions by *k*.
 - (b) The *n*th line splits *k* of the old regions.
 - (c) The *n*th line hits the previous lines in k 1 different places.
- 2. Let L_n denote the maximum number of regions defined by n lines in a plane. Prove

$$L_n = 1 + \frac{n(n+1)}{2}, \quad \text{for} \quad n \ge 0$$

by induction.

- 3. For large value of *n*, can we say that there are four times as many regions with bent lines as with straight lines?
- 4. Some of the regions defined by *n* lines in the plane are infinite, while others are bounded. What is the maximum possible number of bounded regions?
- 5. What is the maximum number of regions definable by *n* zig-zag lines, each of which consists of two parallel infinite half-lines joined by a straight segment?

- 6. How many pieces of cheese can you obtain from a single thick piece by making five straight slices? (The cheese must stay in its original position while you do all the cutting, and each slice must correspond to a plane in 3D.) Find a recurrence relation for P_n , the maximum number of three-dimensional regions that can be defined by *n* different planes.
- 7. Show that the following set of *n* bent lines defines Z_n regions, where Z_n is defined by

$$Z_n = 2n^2 - n + 1, \quad \text{for} \quad n \ge 0.$$

The *j*th bent line, for $1 \le j \le n$, has its zig at $(n^{2j}, 0)$ and goes up through the points $(n^{2j} - n^j, 1)$ and $(n^{2j} - n^j - n^{-n}, 1)$.

8. Is it possible to obtain Z_n regions with *n* bent lines when the angle at each zig is 30°?
