Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in

nitksam@gmail.com

Concrete Mathematics - MA 201 Problem Sheet - 7

- 1. What is the smallest positive integer that has exactly *k* divisors, for $1 \le k \le 6$?
- 2. Prove that gcd(m,n).lcm(m,n) = m.n, and use this identity to express lcm(m,n) in terms of $lcm(n \mod m, m)$, when $n \mod m \neq 0$.
- 3. Let $\pi(x)$ be the number of primes not exceeding *x*. Prove that

$$\pi(x) - \pi(x-1) = [\lfloor x \rfloor \text{ is prime}].$$

- 4. Ten people numbered 1 to 10 are lined up in a circle as in the Josephus problem, and every *m*th person is executed. (The value of *m* may be much larger than 10.) Prove that the first three people to go cannot be 10, k, and k + 1 (in this order), for any *k*.
- 5. The residue number system ($x \mod 3$, $x \mod 5$) has the curious property that 13 corresponds to (1,3), which looks almost the same. Explain how to find all instances of such a coincidence, withoug calculating all fifteen pairs of residues. In other words, find all solutions of the congruences

 $10x + y \equiv x \pmod{3}, \qquad 10x + y \equiv y \pmod{5}.$

- 6. Show that $(3^{77} 1/2$ is odd and composite.
- 7. Compute $\phi(999)$.
- 8. A positive integer *n* is called **squarefree** if it is not divisible by m^2 , for any m > 1. Find a necessary and sufficient condition that *n* is squarefree, in terms of the prime-exponent representation of *n*.
- 9. Prove that when k > 0
 - gcd(km,kn) = k gcd(m,n);
 - lcm(km,kn) = k lcm(m,n).
- 10. Let f_n be the "Fermat number" $2^{2^n} + 1$. Prove that $gcd(f_m, f_n) = 1$ if m < n.
- 11. Show that if $2^n + 1$ is prime then *n* is a power of 2.
- 12. The number 111 111 111 111 111 111 111 is prime. Prove that, in any radix b, $(11...1)_b$ can be prime only if the number of 1's is prime.
- 13. State a recurrence for $\rho(k)$, the ruler function function. Show that there is a connection between $\rho(k)$ and the dist that is moved at step k when an n-disk "Tower of Hanoi" is being transferred in $2^n 1$ moves, for $1 \le k \le 2^n 1$.

- 14. Express $\varepsilon_p(n!)$ in terms of $v_p(n)$, the sum of the digits in the radix *p* representation of *n*.
- 15. We say that *m* exactly divides *n*, written $m \setminus n$, if $m \setminus n$ and gcd(m, n/m) = 1. For example, $p^{\varepsilon_p(n!)} \setminus n!$. Prove or disprove the following:
 - $k \setminus n$ and $m \setminus n \iff km \setminus n$, if gcd(k, m) = 1.
 - For all m, n > 0, either $gcd(m, n) \setminus m$ or $gcd(m, n) \setminus \langle n$.
- 16. A number in decimal notation is divisible by 3 if and only if the sum of its digits is divisible by3. Prove this well-known rule, and generalize it.
- 17. Prove that if gcd(a, b) = 1 and a > b, then

$$gcd(a^m - b^m, a^n - b^n) = a^{gcd(m,n)} - b^{gcd(m,n)}, \qquad 0 \le m < n.$$

All variables are integers.

18. Show that if $p \mod 4 = 3$, there is no integer n such that p divides $n^2 + 1$. But show that if $p \mod 4 = 1$, there is such an integer.
