Instructor: P. Sam Johnson

Problem Sheet 2

- 1. Find E^2 , E^8 and E^{-1} if $E = \begin{pmatrix} 1 & 0 \\ 6 & 1 \end{pmatrix}$.
- 2. Let $P_{n \times n}$ be any permutation matrix. Prove that $P_{n \times n}^m = I_{n \times n}$ for some m.
- 3. Find *LU* factorization of the matrix $\begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5 \end{pmatrix}$. 4. Find *LDU* factorization of the matrix $\begin{pmatrix} 3 & -1 & 2 \\ -3 & -2 & 10 \\ 9 & -5 & 6 \end{pmatrix}$.

5. Given A, find the LU factorization of $A^T A$ and $A A^T$ and compare the factorizations.

Inverse

- 6. Let $x = \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$ and $A = \begin{pmatrix} 5 & 8 & 7 \\ 0 & 1 & -1 \\ 1 & 3 & 0 \end{pmatrix}$ Is x in the column space of A? why or why not?
- 7. Invert the matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$ by the Gauss-Jordan method.
- 8. Let $A = \begin{pmatrix} -2 & -7 & -9 \\ 2 & 5 & 6 \\ 1 & 3 & 4 \end{pmatrix}$. Find the third column of A^{-1} with out computing the other columns.
- 9. Let A be an invertible $n \times n$ matrix, and let B be an $n \times n$ matrix. If $\begin{bmatrix} A & B \end{bmatrix}$ is row equivalent of $\begin{bmatrix} I & X \end{bmatrix}$, what is the relation between X, A and B?

10. Let
$$A = \begin{pmatrix} 2 & 5 \\ -3 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & -5 \\ 3 & k \end{pmatrix}$. What value(s) of k, if any, will make $AB = BA$?

- 11. Could a set of three vectors in \mathbb{R}^4 span all of \mathbb{R}^4 ? What about *n* vectors in \mathbb{R}^m when in *n* is less than *m*?
- 12. Let A be a 3×4 matrix, let y_1 and y_2 be vectors in \mathbb{R}^3 , and let $w = y_1 + y_2$. Suppose $y_1 = Ax_1$ and $y_2 = Ax_2$ for some vectors x_1 and x_2 in \mathbb{R}^4 . What fact allows you to conclude that the system Ax = w is consistent?
- 13. Give all the 2×2 matrices A such that $A^2 = I$.

14. Let
$$S = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
. Compute the least positive integer k such that S^k is the zero matrix.