Instructor : P. Sam Johnson

Problem Sheet 3

- 1. Say TRUE or FALSE with justification.
 - (a) Let A be an $n \times n$ matrix and Ax = b has a solution. Then $A^Tx = b$ also has a solution.
 - (b) If $B = A^{-1}$ then solvability of Ax = b implies solvability of Bx = b.
 - (c) If each Ax = b and Bx = b has a solution, then (A + B)x = b has a solution.
 - (d) Let Ax = b be solvable. If $r(A) \leq r(B)$ then Bx = b is also solvable. Here r(A) denotes the rank of the matrix A.
 - (e) The product of permutation matrices is again a permutation matrix.
 - (f) The inverse of a permutation matrix is itself.
 - (g) There are 2^n permutations of size n.
 - (h) For any square matrix $A, C(A) \subseteq C(A^2)$ and $N(A) \subseteq N(A^2)$. The column and null spaces of A are denoted by C(A) and N(A) respectively.
- 2. (a) What is the column space of an invertible $n \times n$ matrix? What is the nullspace of that matrix?
 - (b) If every column of A is a multiple of the first column, what is the column space of A?
- 3. Multiplying a matrix A times the column vector x = (2, 1) gives what combination of the columns of A? How many rows and columns in A?
- 4. If A is the 2 × 2 matrix $\begin{pmatrix} 2 & 4 \\ 7 & 3 \end{pmatrix}$, what are its pivots?
- 5. Let $A = \begin{pmatrix} 2 & 1 \\ 6 & 3 \end{pmatrix}$. Find b and c so that Ax = b has no solution and Ax = c has a solution.
- 6. How can you find the inverse of A by working with $[A \ I]$? If you solve the n equations Ax = columns of I then the solutions x are columns of _____.
- 7. Give an example of vectors that span \mathbb{R}^2 but are not a basis for \mathbb{R}^2 . Also write down a basis for \mathbb{R} .
- 8. Is there a 3×3 permutation matrix P, besides P = I, such that $P^3 = I$? If yes, give one such P. If no, explain why?
- 9. Find the right inverse of $\begin{pmatrix} 4 & 0 & 0 \\ 0 & 5 & 0 \end{pmatrix}$.

10. Find
$$PA = LDU$$
 factorization of $\begin{pmatrix} 3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & -2 \\ 3 & -7 & 8 \end{pmatrix}$.