Instructor : P. Sam Johnson

Problem Sheet 4

- 1. Which of the following subsets of \mathbb{R}^3 are actually subspaces?
 - (a) the plane of vectors (b_1, b_2, b_3) with first component $b_1 = 0$.
 - (b) the plane of vectors (b_1, b_2, b_3) with $b_1 = 1$.
 - (c) the vectors (b_1, b_2, b_3) with $b_2b_3 = 0$.
 - (d) the plane of vectors (b_1, b_2, b_3) that satisfy $b_3 b_2 + 3b_1 = 0$.
- 2. What is the dimension of the vector space of 2×2 matrices with entries in complex numbers (\mathbb{C}) over the field reals \mathbb{R} ? Write down its basis?
- 3. Define what is meant by a set of vectors being linearly independent.
- 4. What are the dimensions of the four fundamental subspaces, if A is 6×3 with rank 2?
- 5. Find all solutions of $Ax = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$. Express your solution in the form $x = x_{\text{particular}} + c_1x_1 + c_2x_2$, where x_1, x_2 are special solutions.
- 6. The augmented matrix $[N \ c]$ is row reduced to $[I \ d]$. What is the relation between N, c and d?