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Overview

Two operations, addition and scalar multiplication (multiplication
by real scalars) are defined on a set. In the set we can add any two
vectors, and we can multiply vectors by real scalars. The set
becomes a vector space if eight axioms are satisfied.

The following are discussed in the lecture.

1 Formal definition of a real vector space is given, with
examples.

2 A subspace is a subset of a vector space which is “closed”
under additon and scalar mutiplication. For a given matrix of
order m × n, two interesting subspaces (column space and
null space) are defined in Rm and Rn respectively.

3 Finally, a result connecting general solutions of homogeneous
system (Ax = b) and non-homogeneous system (Ax = 0), is
given. The result is helpful in writing down the general
solution of the non-homogeneous system.



Introduction

The space Rn consists of all column vectors with n components.
(The components are real numbers.) The space R2 is represented
by the usual xy -plane; the two components of the vector become
the x and y coordinates of the corresponding point.

R3 is equally familiar, with the three components giving a point in
three-dimensional space.

The one-dimensional space R1 is a line. The valuable thing for
linear algebra is that the extension to n dimensions is so
straightforward; for a vector in seven-dimensional space R7 we just
need to know the seven components, even if the geometry is hard
to visualize.

Within these spaces, and within all vector spaces, two operations
are possible: We can add any two vectors, and we can
multiply vectors by real scalars. For the spaces Rn these
operations are done a component at a time.



Definition : Vector Space (also called, Linear Space)

A real vector space X is a set of “vectors” together with rules for
vector addition and multiplication by real numbers. The addition
and multiplication (by real numbers) must produce vectors that are
within the space, and they must satisfy the following eight axioms
for all α, β ∈ R and x , y , z ∈ X :

1. (x + y) + z = x + (y + z) (Associativity of +)

2. there exists an elements 0 of X such that x + 0 = x for all
x ∈ X (Existence of 0)

3. for each x ∈ X there exists an element −x in X such that
x + (−x) = 0 (Existence of negative)

4. x + y = y + x (Commutativity of +)

5. (α + β)x = αx + βx (Distributivity)

6. α(x + y) = αx + αy (Distributivity)

7. α(βx) = (αβ)x

8. 1.x = x .



Examples of Vector Spaces

1. The space Rn consists of all column vectors with n
components.

2. The infinite-dimensional space R∞.

3. The space of 3 by 2 matrices. In this case the “vectors” are
matrices! We can add two matrices, and A + B = B + A, and
there is a zero matrix, and so on. This space is almost the
same as R6. (The six components are arranged in a rectangle
instead of a column.)

4. The space of m by n matrices.

5. The space of functions f defined on a fixed interval, say
0 ≤ x ≤ 1. The vectors are functions, and again the dimension
is infinite - in fact, it is a larger infinity than for R∞.



Exercise

Construct a subset of the xy-plane R2 that is

1. closed under vector addition and subtraction, but not scalar
multiplication.

2. closed under scalar multiplication but not under vector
addition.



Subspaces

Geometrically, think of the usual three-dimensional R3 and choose
any plane through the origin. That plane is a vector space in its
own right.

If we multiply a vector in the plane by 3, or −3, or any other
scalar, we get a vector which lies in the same plane. If we add two
vectors in the plane, their sum stays in the plane.

This plane illustrates one of the most fundamental ideas in the
theory of linear algebra; it is a subspace of the original space R3.



Subspaces

A subspace of a vector space is a nonempty subset that satisfies
two requirements:

1. If we add any vectors x and y in the subspace, their sum
x + y is in the subspace.

2. If we multiply any vector x in the subspace by any scalar c ,
the multiple cx is still in the subspace.

In other words, a subspace is a subset which is “closed” under
additon and scalar mutiplication. Those operations follow the rules
of the host space, without taking us outside the subspace.

There is no need to verify the eight required properties, because
they are satisfied in the larger space and will automatically be
satisfied in every subspace.

Notice in particular that the zero vector will belong to every
subspace.



Subspaces

The most extreme posibility for a subspace is to contain only one
vector, the zero vector. It is a “zero-dimensional space,”
containing only the zero vector. This is the smallest possible
vector space. Note that the empty set is not allowed.

At the other extreme, the largest subspace is the whole of the
original space - we can allow every vector into the subspace.

If the original space is R3, then the possible subspaces are easy to
describe: R3 itself, any plane through the origin, any line through
the origin, or the origin (the zero vector) alone.



Exercise

Which of the following are subspaces of R∞ ?

1. All sequences like (1, 0, 1, 0, . . .) that include infinitely many
rows.

2. All sequences (x1, x2, x3, . . .) with xj = 0 for some point
onward.

3. All convergent sequences.

4. All geometric progression (x1, kx1, k
2x1, . . .) allowing all k and

x1.



Smallest Subspace Containing a Set

The distinction between a subset and a subspace is made clear by
examples: Consider all vectors whose components are positive or
zero. If the original space is the xy -plane R2, then this subset is
the first quadrant; the coordinates satisfy x ≥ 0 and y ≥ 0. It is
not a subspace, even though it contains zero and addition does
leave us within the subset.

If c = −1 and x = (1, 1), the multiple cx = (−1,−1) is in the third
quadrant instead of the first. If we include the third quadrant along
with the first, then scalar multiplication is all right; every mutiple
cx will staty in this subset, however the addition of (1, 2) and
(−2,−1) gives a vector (−1, 1) which is not in either quadrant.

The smallest subspace containing the first quadrant is the whole
space R2.



If we start from the vector space of 3 by 3 matrices, then one
possible subspace is the set of lower triangular matrices.

Another is the set of symmetric matrices. In both cases, the
sums A + B and the multiples cA inherit the properties of A and
B. They are lower triangular if A and B are lower triangular, and
they are symmetric if A and B are symmetric.

Of course, the zero matrix is in both subspaces.

Exercise

What is the smallest subspace of 3× 3 matrices that contains all
symmetric matrices and all lower triangular matrices? What is the
largest subspace that is contained in both of those subspaces?



Column space - An Example of a Subspace

We now come to the key examples of subspaces. They are tied
directly to a m × n matrix A, and they give information about the
system Ax = b.

The column space contains all linear combinations of the columns
of A and it is denoted by C (A). The system Ax = b is solvable iff
the vector b can be expressed as a combination of the columns of
A. Then b is in the column space.

Example

The matrices A =

 1 0
5 4
2 2

 and B =

 1 0 1
5 4 9
2 2 4

 have the

same column spaces.

Note that the third column of B is the sum of first and second
columns of B.



Column space is a subspace of Rm.

Suppose b and b′ lie in the column space, so that Ax = b for some
x and A′ = b′ for some x ′; x and x ′ just give the combinations
which produce b and b′.

Then A(x + x ′) = b + b′, so that b + b′ is also a combination of
the columns. The attainable vectors are closed under addition, and
the first requirement for a subspace is met.

If b is in the column space, so is any multiple cb. If some
combination of columns produces b (say Ax = b), then multiplying
every coefficient in the combination by c will produce cb. In other
words, A(cx) = cb.

The smallest possible column space comes from the zero matrix
A = 0. The only vector in its column space (the only combination
of the columns) is b = 0, and no other choice of b allows us to
solve 0x = b.



Example

Let A =

 1 0
5 4
2 4

. A restatement of the system Ax = b is

written as follows : u

 1
5
2

 + v

 0
4
4

 =

 b1

b2

b3

 .

The subset of attainable right-hand sides b is the set of all
combinations of the columns of A.

One possible right side is the first column itself; the weights are
u = 1 and v = 0.

Another possiblity is the second column: u = 0 and v = 1. A third
is the right side b = 0; the weights are u = 0, v = 0 (and with that
trivial choice, the vector b = 0 will be attainable no matter what
the matrix is).



Column Space is Full.

At the other extreme, suppose A is the 5 by 5 identity matrix.
Then the column space is the whole of R5; the five columns of the
identity matrix can combine to produce any five-dimensional vector
b.

This is not at all special to the identity matrix.

Any 5 by 5 matrix which is nonsingular will have the whole of R5

as its column space. For such a matrix we can solve Ax = b by
Gaussian elimination; there are five pivots.

Therefore every b is in the column space of a nonsingular matrix.



When is Ax = b solvable?

Now we have to consider all combinations of the two columns, and
we describe the result geometrically: Ax = b can be solved iff b
lies in the plane that is spanned by the two column vectors. This is
the thin set of attainable b.

If b lies off the plane, then it is not a combination of the two
columns. In this case Ax = b has no solution.

What is important is that this plane is not just a subset of R3; it is
a subspace.

For what value of b, is the system Ax = b solvable?

The equation Ax = b can be solved iff b lies in the column space
of A.



Nullspace : Another Example of a Subspace

The nullspace of a matrix consists of all vectors x such that
Ax = 0 (i.e., the set of solutions to Ax = 0). It is denoted by
N(A).

I If Ax = 0 and Ay = 0, then A(x + y) = 0.

I If Ax = 0, then A(cx) = 0.

As both requirement are satisfied, N(A) is a subspace of Rn.

Note that both requirements fail if the right-hand side is not zero!



Solving Ax = 0 and Ax = b

Consider a system of m linear equations with n unknowns

Ax = b. (1)

When b = 0, it is called homogeneous system; otherwise
nonhomogeneous.

The system
Ax = 0 (2)

is called the homogeneous system associated with 1. The above
system always has a solution 0 (the zero column vector), called
zero or trivial solutions.



General Solution of Homogeneous System

The fundamental relationship between the systems 1 and 2 follows :

Theorem

Suppse u is a particular solution of the nonhomogeneous system 1
and supposed W is the general solution of the associated
homogeneous system 2. Then

u + W = {u + w : w ∈W }

is the general solution of the non-homogeneous system 1.

We emphasize that the above theorem is of theoretical interest and
does not help us to obtain explicit solutions of the system 1. But
by the method of (Gaussian) elimination, the general solution of
the non-homogeneous system can be found.



Example : Simple System – One Equation and One
Unknown

Consider the simple 1× 1 system ax = b, one equation and one
unknown. There are three possibilities.

1. Suppose a 6= 0. The system has unique solution b/a.

2. Suppse a = 0 but b 6= 0. Then 0x = b has no solution. The
column space of 1× 1 zero matrix contains only b = 0.

3. Suppse both a and b are zero. Then the system 0x = 0 has
infinitely many solutions. The nullspace contains all x . A
particular solution is xp = 0, and the complete solution is
xp + (any x) = 0 + (any x).

I hope you can solve (happily, easily) all problems in problem
sheet-1.


