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Motivation

One wishes to compute xy .

1 Obtain the values of log x and of log y (from suitable tables).

2 Evaluate log x + log y , which represents log xy .

3 From the knowledge of log xy we are then able to obtain the value of
xy (again with the aid of tables).
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The above approach is useful for the following reasons.

1 To each positive number x there corresponds exactly one number,
log x , and this number is easily obtained from tables.
Mathematically, there is a function f takes x to log x .

2 To each value of log x there corresponds exactly one value of x , and
this value is again available from tables.
Mathematically, the function f is one to one.

3 Certain arithmetic operations involving the numbers x and y , such as
multiplication and division, may be replaced by simpler
operations, such as addition and substraction, by means of the
“transformed” numbers log x and log y .

Instead of performing the arithmetic directly with the numbers x
and y , we first obtain the numbers log x and log y , do our arithmetic
with these numbers, and then transform back.
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Suppose that X is a random variable.

In computing various characteristics of the random variable X , such as
E (X ) or V (X ), we work directly with the probability distribution of X .
Possibly, we can introduce some other function (called moment
generating function-mgf) and make our required computation in terms
of this new function. This is, in fact, precisely what we shall do.

Computing certain characteristics of X :

Start with probability dis-
tribution of X

⇒ Construct MGF

⇓

Come back to probability
distribution of X

⇐ Solve the given problem
with the help of MGF
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Moments of a random variable

Those functions should characterize distribution functions of random
variables.

The mean and variance do not contain all the available information
about the density function of a random variable.

For instance, suppose X and Y are random variables, with distributions

pX =

(
1 2 3 4 5 6
0 1/4 1/2 0 0 1/4

)
,

pY =

(
1 2 3 4 5 6

1/4 0 0 1/2 1/4 0

)
.

Then with these choices, we have E (X ) = E (Y ) = 7/2 and
V (X ) = V (Y ) = 9/4, and yet certainly pX and pY are different
distribution functions which have the same mean and the same variance.
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This raises a question: Let X be a discrete random variable with range
{x1, x2, . . .}, and distribution function be p = pX .

If we know its mean µ = E (X ) and its variance σ2 = V (X ), then what
else do we need to know to determine p completely?

A nice answer to this question, at least in the case that X has finite
range, can be given in terms of the moments of X , which are numbers
defined as follows:

µk = kth moment of X

= E (X k) =
∞∑
j=1

(xj)
kp(xj).

provided the sum converges. Here p(xj) = P(X = xj).
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In terms of these moments, the mean µ and variance σ2 of X are given
simply by

µ = µ1, σ2 = µ2 − µ21,

so that a knowledge of the first two moments of X gives us its mean
and variance.

But a knowledge of all the moments of X determines its distribution
function p completely. (The proof of the result will be given later.)

We need a function of a random variable which should generate
moments of X .
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We introduce a new variable t, and define a function g(t) as follows:

g(t) = E (etX ) =
∞∑
k=0

µktk

k!

= E
( ∞∑

k=0

X ktk

k!

)
=
∞∑
j=1

etxj p(xj).

We call g(t) the moment generating function for X , and think of it as
a convenient device for describing the moments of X . Indeed, if we
differentiate g(t), n times and then set t = 0, we get µn:

dn

dtn
g(t)

∣∣∣
t=0

= g (n)(0)

=
∞∑
k=n

k!µktk−n

(k − n)!k!

∣∣∣
t=0

= µn.
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Existence of MGF

Mgf’s may not always exist for all values of t. Hence it may happen
that the mgf is not defined for all values of t. However, we shall not
concern ourselves with this potential difficulty. Whenever we make use of
the mgf, we shall always assume it exists.

At t = 0, the mgf always exists and equals 1.

Example

Suppose X has range {1, 2, . . .} and pX (j) = 1/n for 1 ≤ j ≤ n (uniform
distribution). Find the first and second moments of X .

Answer. The MGF is g(t) = et(ent−1)
n(et−1) . The moments are µ1 = (n + 1)/2

and µ2 = (n+1)(2n+1)
6 .
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Formal definition of MGF

Definition

Let X be a discrete random variable with probability distribution
p(xi ) = P(X = xi ), i = 1, 2, . . .. The function MX , called the moment
generating function (mgf) of X is defined by

MX (t) =
∞∑
j=1

etxj p(xj).

If X is a continuous random variable with pdf f , we define the moment
generating function by

MX (t) =

∫ +∞

−∞
etx f (x)dx .
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Examples

Example

Suppose that X is uniformly distributed over the interval [a, b].
Therefore the mgf is given by

MX (t) =

∫ b

a

etx

b − a
dx

=
1

b − a
[ebt − eat ], t 6= 0.
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Examples

Example

Suppose that X is binomially distributed with parameters n and p. Then

MX (t) =
∞∑
k=0

etk
(

n
k

)
pk(1− p)n−k

=
∞∑
k=0

(
n
k

)
(pet)k(1− p)n−k

= [pet + (1− p)]n.
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Examples

Example

Suppose that X has a Poisson distribution with parameter λ. Thus

MX (t) =
∞∑
k=0

etk
e−λλk

k!

= e−λ
∞∑
k=0

(λet)k

k!

= e−λeλe
t

= eλ(e
t−1).
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Examples

Example

Suppose that X has an exponential distribution with parameter α.
Therfore

MX (t) =

∫ ∞
0

etxαeαxdx = α

∫ ∞
0

ex(t−α)dx .

(This integral converges only if t < α. Hence the mgf exists only for those
values of t. Assuming that this condition is satisfied, we shall proceed.)
Thus

MX (t) =
α

t − α
ex(t−α)

∣∣∣∞
0

=
α

α− t
, t < α.
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Obtaining mgf without knowing pdf

Example

We can obtain the mgf of a function of a random variable without first
obtaining its probability distribution.
For example, if X has distribution N(0, 1) and we want to find the mgf of
Y = X 2, we can proceed without first obtaining the pdf of Y . We may
simply write

MY (t) = E (etY ) = E (etX
2
)

=
1√
2π

∫ +∞

−∞
exp(tx2 − x2/2)dx

= (1− 2t)−1/2

after a straightforward integration.

Obtain pdf of Y = X 2 and find MY (t).
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Examples

Example

Suppose that X has (normal) distribution N(µ, σ2). Hence

MX (t)) =
1√
2πσ

∫ +∞

−∞
etxe

(
− 1

2

[
x−µ
σ

]2)
dx .

MX (t) =
1√
2π

∫ +∞

−∞
et(σs+µ)e−s

2/2ds (by letting
x − µ
σ

= s)

= etµ+σ
2t2/2 1√

2π

∫ +∞

−∞
e

−(s−σt)2

2 ds.

= etµ+σ
2t2/2 1√

2π

∫ +∞

−∞
e−v

2/2dv (by letting s − σt = v)

= e(tµ+σ
2t2/2)
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Example

Let X have a Gramma distribution with parameters α and r. Then

MX (t) =
α

Γ(r)

∫ ∞
0

etx(αx)r−1e−αxdx

=
αr

Γ(r)

∫ ∞
0

x r−1e−x(α−t)dx

(This integral converges provided α > 1) Let x(α− t) = u

MX (t) =
αr

(α− t)Γ(r)

∫ ∞
0

( u

α− t

)r−1
e−udx

=
( α

α− t

)r 1

Γ(r)

∫ ∞
0

ur−1e−udu

=
( α

α− t

)r
{ because the integral equals Γ(r).}
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MGF of chi-square distribution

Since the chi-square distribution is obtained as a special case of the
Gamma distribution by letting α = 1/2 and r = n/2 (n a positive integer),
we have that if Z has distribution χ2

n, then

MZ (t) = (1− 2t)−n/2.
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Properties of the Moment-Generating Function

Reason for calling MX the moment generating function.

The infinite series converges

MX (t) = 1 + tE (X ) +
t2E (X 2)

2!
+ · · ·+ tnE (X n)

n!
+ . . .

under fairly general condition. We shall assume that the required
conditions are satisfied and proceed accordingly. Since MX is a function of
the real variable t, we may consider taking the derivative of MX (t) with
respect to t.
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The infinte series

MX (t) = E (X ) + tE (X 2) +
t2E (X 3)

2!
+ · · ·+ tn−1E (X n)

(n − 1)!
+ . . .

converges under fairly general condition. We shall assume that the
required conditions are satisfied and proceed accordingly.

Setting t = 0 we find that only the first term survives and we have
M ′(0) = E (X ). Continuing in this manner, we obatin [assuming that
M(n)(0) exists] the following theorem.

Theorem

M(n)(0) = E (X n)

That is, the nth derivative of MX (t) evaluated at t = 0 yields E (X n).
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Applying Maclaurin’s series expansion to the function MX , we may wirte

MX (t) = MX (0) + M ′X (0)t + · · ·+
M

(n)
X (0)tn

n!
+ · · ·

= 1 + µ1t +
µ2t2

2!
+ · · ·+ µntn

n!
+ · · ·

where µi = E (X i ), i = 1, 2, . . . In particular,

V (X ) = E (X 2)− (E (X )2) = M ′′(0)− [M ′(0)]2

Why the above methods should be fruitful at all?

Would it not be simpler (and more straightforward) to compute the
moments of X directly, rather than first obtain the mgf and then
differentiate it?

The answer is that for many porblems the latter approach is more easily
followed.
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Moment Problem

Using the moment generating function, we can now show, at least in the
case of a discrete random variable with finite range, that its distribution
function is completely determined by all the moments of X .

Theorem

Let X be a discrete random variable with finite range {x1, x2, . . . , xn}, and
moments µk = E (X k). Then the moment series

g(t) =
∞∑
k=1

µktk

k!

converges for all t to an infinitely differentiable function g(t).
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Proof of the theorem

We know that µk =
∑n

j=1(xj)
kp(xj). If we set M = max |xj |, then we have

|µk | ≤
n∑

j=1

|xj |kp(xj) ≤ Mk .

n∑
j=1

p(xj) = Mk .

Hence, for all N we have

N∑
k=0

∣∣∣µktk

k!

∣∣∣ ≤ N∑
k=0

(M|t|)k

k!
≤ eM|t|,

which shows that the moment series converges for all t. Since it is a power
series, we know that its sum is infinitely differentiable.

This shows that the µk determines g(t). Conversely, since µk = g (k)(0),
we see that g(t) determines the µk .
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Theorem

Let X be a discrete random variable with finite range {x1, x2, . . . , xn},
distribution function p, and moment generating function g. Then g is
uniquely determined by p, and conversely.

If we delete the hypothesis that X have finite range in the above theorem,
then the conclusion is no longer necessarily true.
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Generating Functions for Continuous Densities

We introduced the concepts of moments and moment generating functions
for discrete random variables. These concepts have natural analogues for
continuous random variables, provided some care is taken in
arguments involving convergence.
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If X is a continuous random variable defined on the probability space Ω,
with density function fX , then we define the nth moment of X by the
formula

µn = E (X n) =

∫ ∞
−∞

xnfX (x) dx ,

provided the integral

µn = E (X n) =

∫ ∞
−∞
|x |nfX (x) dx ,

is finite. Then, just as in the discrete case, we see that µ0 = 1, µ1 = µ,
and µ2 − µ21 = σ2.
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Example

Using the mgf, evaluate E (X ) and V (X ) when

1 X has binomial distribution

2 X has geometric distribution

3 X has Poisson distribution with mean λ

Solution.

1 Suppose that X has a binomial distribution with parameters n and p.
Hence, MX (t) = [pet + q]n.

E (X ) = M ′(0) = np

E (X 2) = M ′′(0) = np[(n − 1)p + 1].

V (X ) = M ′′(0)− [M ′(0)]2 = np(1− p).
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1 Suppose that X has distribution N(α, β2). Therefore,
MX (t) = exp(α + t + 1

2β
2t2).

M ′(0) = α,M ′′(0) = β2 + α2,E (X ) = α,V (X ) = β2.

2 Let X have a geometric probability distribution. That is,
P(X = k) = qk−1p, k = 1, 2, . . . (p + q = 1). Thus

MX (t) =
∞∑
k=1

etkqk−1p =
p

q

∞∑
k=1

(qet)k .

E (X ) = p/(1−q)2 = 1/p, E (X 2) = p(1 + q)/(1−q)3 = (1 + q)/p2

and
V (X ) = (1 + q)/p2 − (1/p)2 = q/p2.
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Theorem

Suppose that the random variable X has mgf MX . Let Y = αX + β.
Then MY , the mgf of random variable Y , is given by

MY (t) = eβtMX (αt).

In words: To find the mgf of Y = αX + β, evaluate the mgf of X at αt
(instead of t) and multiply by eβt

Theorem

Let X and Y be two random variables with mgf’s, MX (t) and MY (t),
respectively. If MX (t) = MY (t) for all values of X t, then X and Y have
the same probability distribution.

Proof.

It says that if two random variables have the same mgf, then they have the
same probability distribution. That is, the mgf uniquely determines the
probability distribution of the random variable
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Example

Suppose that X has distribution N(µ, σ2). Let Y = αX + β. Then prove
that Y is again normally distributed.

Theorem

Suppose that X and Y are independent random variables. Let
Z = X + Y . Let MX (t),MY (t), and MZ (t) be the mgf’s of the random
variables X ,Y , and Z respectively. Then MZ (t) = MX (t)MY (t).

Proof.

MZ (t) = E (eZt) = E [e(X+Y )t ] = E (eXteYt)

= E (eXt)E (eYt) = MX (t)MY (t)

Note: This theorem may be generalized as follows: If X1,X2, . . . ,Xn are
independent random variables with mgf’s MXi

, i = 1, 2, . . . , n, then MZ ,
the mgf of Z = X1 + X2 + · · ·+ Xn, is given by
MZ (t) = MX1(t)MX2(t) · · ·MXn(t).
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Conclusion

A generating function of a random variable is an expected value of a
certain transformation of the variable. Most generating functions share
four important properties:

1 Under mild conditions, the generating function completely
determines the distribution of the random variable.
Often a random variable is shown to have a certain distribution by
showing that the generating function has a certain form. The process
of recovering the distribution from the generating function is known
as inversion.

2 The generating function of a sum of independent variables is
the product of the generating functions.
This is frequently used to determine the distribution of a sum of
independent variables. By contrast, recall that the probability density
function of a sum of independent variables is the convolution of the
individual density functions, a much more complicated operation.

P. Sam Johnson (NITK) Moment Generating Functions April 29, 2014 31 / 40



3 The moments of the random variable can be obtained from the
derivatives of the generating function.
Computing moments from the generating function is easier than
computing the moments directly from the definition.

4 Ordinary (pointwise) convergence of a sequence of generating
functions corresponds to the special convergence of the
corresponding distributions.
The last property is known as the continuity theorem. Often it is
easer to show the convergence of the generating functions than to
prove convergence of the distributions directly.
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Problems

1 The random variable X can assume the values 1 and −1 with
probability 1

2 each. Find

(a) the moment generating function
(b) the first four moments about the origin.

2 A random vairable X has density function given by

f (x) =

{
2e−2x x ≥ 0
0 x < 0

Find the moment generating function and the first four moments
about the origin.

3 Find the first four moments about the origin and about the mean, for
a random variable X having density function

f (x) =

{
4x(9− x2)/81 0 ≤ x ≤ 3
0 otherwise
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Problems

4 If M(t) is the moment generating function for a random variable X ,
prove that the mean is µ = M ′(0) and the variance is
σ2 = M ′′(0)− [M ′(0)]2.

5 Find the moment generating function of a random vairable X that is
binomially distributed.

6 Find the moment generating function for the general normal
distribution.

7 Show that the moment generating function of a random variable X ,
which is chi square distributed with v degrees of freedom, is
M(t) = (1− 2t)−ν/2.
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Problems

8 Let X1 and X2 be independent random variables that are chi square
distributed with ν1 and ν2 degrees of freedom, respectively.

(a) Show that the moment generating function of Z = X1 + X2 is
(1− 2t)−(ν1+ν2)/2, thereby

(b) show that Z is chi square distributed with ν1 + ν2 degrees of freedom.

9 Suppose that X has pdf given by

f (x) = 2x , 0 ≤ x ≤ 1.

(a) Determine the mgf of X .
(b) Using the mgf, evaluate E (X ) and V (X ) and check your answer.
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Problems

10 Suppose that S , a random voltage, varies between 0 and 1 volt and is
uniformly distributed over that interval. Suppose that the signal S is
perturbed by an additive, independent random noise N which is
uniformly distributed between 0 and 2 volts.

(a) Find the mgf of the voltage (including noice).
(b) Using the mgf, obtain the expected value and variance of this voltage.

11 Suppose that X has the following pdf:

f (x) = λe−λ(x − a), x ≥ a.

This is known as a two-parameter exponential distribution.
(a) Find the mgf of X .
(b) Using the mgf, find E (X ) and V (X ).
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Problems

12 Let X be the outcome when a fair die is tossed.

(a) Find the mgf of X .
(b) Using the mgf, find E (X ) and V (X ).

13 Suppose that the continuous random variables X had pdf

f (x) = e−|x |/2, −∞ < x <∞.

(a) Obtain the mgf of X .
(b) Using the mgf, find E (X ) and V (X ).
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Problems

14 Use the mgf to show that if X and Y are independent random
variables with distribution N(µx , σ

2
x) and N(µy , σ

2
y ), respectively, then

Z = aX + bY is again normally distributed, where a and b are
constants.

15 Suppose that the mgf of a random variable X is of the form
MX (t) = (0.4et + 0.6)8.

(a) What is the mgf of the random variable Y = 3X + 2?

(b) Evaluate E (X ).
(c) Can you check your answer to (b) by some other method?
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Problems

16 A number of resistances, Ri , i = 1, 2, . . . , n, are put into a series
arrangement in a circuit. Suppose that each resistance is normally
distributed with E (Ri ) = 10 ohms and V (Ri ) = 0.16.

(a) If n = 5, what is the probability that the resistance of the circuit
exceeds 49 ohms?

(b) How large should n be so that the probability that the total resistance
exceeds 100 ohms is approximately 0.05?

17 In a circuit n resistances are hooked up into a series arrangement.
Suppose that each resistance is uniformly distributed over [0, 1] and
suppose, furthermore, that all resistances are independent. Let R be
the total resistance.

(a) Find the mgf of R.
(b) Using the mgf, obtain E (R) and V (R). Check your answers by direct

computation.

18 If X has distribution χ2
n, using the mgf, show that E (X ) = n and

V (X ) = 2n.
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Problems

19 Suppose that V , the velocity (cm/sec) of an object, has distribution
N(0, 4). If K = mV 2/2 ergs is the kinetic energy of the object (where
m = mass), find the pdf of K . If m = 10 grams, evaluate P(K ≤ 3).

20 Suppose that the life length of an item is exponentially distributed
with parameter 0.5. Assume that 10 such items are installed
successively, so that the ith item is installed “immediately” after the
(i − 1)-item has failed. Let Ti be the time to failure of the ith item,
i = 1, 2, . . . , 10, always measured from the time of installation. Hence
S = T1 + · · ·+ T10 represents the total time of functioning of the 10
items. Assuming that the Ti ’s are independent, evaluate P(S ≥ 15.5).

21 Suppose that X1, . . . ,X80 are independent random variables, each
having distribution N(0, 1). Evaluate P[X 2

1 + · · ·+ X 2
80 > 77].
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