Instructor : P. Sam Johnson

<u>Problem Sheet</u> <u>Some Important Continuous Randorm Vairables</u> Exponential, Gamma and Chi-square Distributions

1. Show that the mean and variance of the exponential distribution are given by

(a)
$$E(X) = 1/\alpha$$
, (b) $V(X) = 1/\alpha^2$.

- 2. The exponential and geometric distributions have the property of having "no memory (lack-ofmemory)". What does it mean?
- 3. Say true or false. The only continuous random variable assuming nonnegative values having "no memory (lack-of-memory)" property is an exponentially distributed random variable.
- 4. Show that the mean and variance of the gamma distribution are given by

(a)
$$\mu = r/\alpha$$
, (b) $\sigma^2 = r/\alpha^2$.

- 5. Show that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.
- 6. Let X be a normally distributed random variable having mean 0 and variance 1. Show that X^2 is chi square distributed with 1 degrees of freedom.
- 7. Let X_1 and X_2 be independent random variables that are chi square distributed with ν_1 and ν_2 degrees of freedom, respectively. Show that the moment generating function of $Z = X_1 + X_2$ is $(1-2t)^{-(\nu_1+\nu_2)/2}$, thereby, show that Z is chi square distributed with $\nu_1 + \nu_2$ degrees of freedom.
- 8. Let X_1, X_2 be independent normally distributed random variables with mean 0 and variance 1. Then $\chi^2 = X_1^2 + X_2^2$ is chi squre distributed with 2 degrees of freedom. [Hint: Use problems 6 and 7]
- 9. The graph of the chi-square distributed with 5 degrees of freedom is shown below. Find the values χ_1^2, χ_2^2 for which
 - (a) the shaded area on the right = 0.05,
- (c) the shaded area on the left = 0.10,
- (b) the total shaded area = 0.05,
- (d) the shaded area on the right 0.01.

- 10. Find the values of χ^2 for which the area of the right-hand tail of the χ^2 distribution is 0.05, if the number of degrees of freedom ν is equal to
 - (a) 15, (b) 21, (c) 50.

- 11. Suppose that the random variable X has a chi-square distribution with 10 degrees of freedom. If we are asked to find two numbers a and b such that P(a < x < b) = 0.85, say, we should realize that there are many pairs of this kind.
 - (a) Find two different sets of values (a, b) satisfying the above condition.
 - (b) Suppose that in addition to the above, we require that

$$P(X < a) = P(X > b).$$

How many sets of values are there?

- 12. Compare the **upper bound** on the probability $P[|X E(X)|] \ge 2\sqrt{V(X)}$ obtained from Chebyshev's inequality with the exact probability in each of the following cases.
 - (a) X has distribution $N(\mu, \sigma^2)$.
 - (b) X has Poisson distribution with parameter λ .
 - (c) X had exponential distribution with parameter α .
- 13. Suppose that X is a random variable for which $E(X) = \mu$ and $V(X) = \sigma^2$. Suppose that Y is uniformly distributed over the interval (a, b). Determine a and b so that E(X) = E(Y) and V(X) = V(Y).

* * * * **