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In the Euclidean space R2 and R3 there are two concepts, viz., length (or
distance) and angle which have no analogues over a general field.

Fortunately there is a single concept usually known as scalar product or
dot product which covers both the concepts of length and angle.
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Let a = (a1, a2) and b = (b1, b2)
be vectors in R2 represented by the
points A and B as in figure. Then the
scalar product of a and b is defined
to be

〈a, b〉 = `1`2 cos θ

where `1 is the length of OA, `2 is
the length of OB and θ is the angle
between OA and OB.

It can be shown using trigonometry that `1`2 cos θ = a1b1 + a2b2, so
〈a, b〉 = a1b1 + a2b2. In Linear Algebra, scalar product is called inner
product.
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Length, distance, angle : in terms of the inner product

1 Length of a vector: The length OA can
be defined in terms of the inner product
since

OA2 = 〈a, a〉.
2 Distance between vectors: If OABC is a

parallelogram, the distance
AB = OC =

√
〈b − a, b − a〉 since

C = b − a.

3 The angle θ can be obtained as

θ = cos−1

(
〈a, b〉√
〈a, a〉.〈b, b〉

)
.
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The above concepts and results have obvious analogues in R3.

We shall extend them to arbitrary (finite-dimensional) vector spaces over
R or C.

One does not extend inner product to vector spaces over a general field
mainly because 〈x , x〉 ≥ 0 has no meaning in a general field.
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Problems

1 Let z be a fixed nonnull vector in the plane. What is the locus of the
point x such that 〈x , z〉 = 0? What happens if 0 is replaced by a
non-zero scalars?

2 If x1, x2, y1, y2 are real numbers, show that

(x1x2 + y1y2)2 ≤ (x2
1 + y2

1 )(x2
2 + y2

2 ).

Hence deduce that PQ + QR ≥ PR for any three points P,Q and R
in the plane.
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Motivated by the usual inner product (dot product) on R2 we now give the
axiomatic definition of inner product on a vector space over F , where F is
either R or C.

Definition

An inner product on a vector space V over F is a map (x , y) 7→ 〈x , y〉
from V × V to F satisfying the following three conditions:

1 〈x , y〉 = 〈y , x〉.
2 〈αx + βy , z〉 = α〈x , z〉+ β〈y , z〉
3 〈x , x〉 ≥ 0 ; 〈x , x〉 = 0 ⇐⇒ x = 0.

a vector space with an inner product an inner product space
a real inner product space a Euclidean space
a complex inner product space a unitary space
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Properties of an inner product

1 The restriction of an inner product to a subspace is an inner product.
2 In any inner product space, we have

〈x , αy + βz〉 = α〈x , y〉+ β〈x , z〉.
〈0, y〉 = 〈x , 0〉 = 0.

3 When the second argument is held fixed, inner product is linear in
the first argument. Similarly, when the first argument is held fixed,
inner product is conjugate-linear in the second argument.
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Examples of an inner product

1 The inner product

〈x , y〉 =
n∑

i=1

xiyi = yT x

on R2 is called the canonical inner product on Rn.
2 On Cn, the canonical inner product is defined by

〈x , y〉 =
n∑

i=1

xiyi = y∗x .

y∗, the adjoint of y , to denote yT .
3 Fix any finite subset A of R with size ≥ n. Let V = Pn over R.

〈p, q〉 :=
∑
a∈A

p(a)q(a)

is an inner product on V .
4 〈A,B〉 = tr(B∗A) is an inner product on Cm×n.
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Examples of an inner product

1 On the vector space V of all real-valued continuous functions on an
interval [a, b],

〈f , g〉 =

∫ b

a
f (t) g(t) dt

defines an inner product.

2 If h ∈ V is such that h(t) > 0 for all t ∈ [a, b],

〈f , g〉 =

∫ b

a
h(t)f (t) g(t) dt

is also an inner product.

3 Let V be the vector space of all real-valued random variables with
mean 0 and finite variance, defined on a fixed probability space. Let
F = R and define 〈x , y〉 to be the covariance between x and y .
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Examples of non-inner product spaces

1 〈x , y〉 := yT x and 〈x , y〉 := x∗y are not inner products on Cn.

2 〈A,B〉 =
∑n

i=1 aiibii is not an inner product on Cm×n.
What are all the axioms which are violated?
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Inner product associated with a matrix

Let V be an inner product space and B = {u1, u2, . . . , un} a basis of V .
Let α = (α1, α2, . . . , αn)T and β = (β1, β2, . . . , βn)T be the coordinate
vectors of x and y respectively with respect to B and let A = (aij), where
aij = 〈uj , ui 〉. Then

〈x , y〉 := 〈
∑

αiui ,
∑

βjuj〉 =
∑∑

βjajiαi = β∗Aα. (1)

The matrix A will satisfy the following conditions:

1 A = A∗

2 α∗Aα ≥ 0 for all α ∈ F n,

3 if α∗Aα = 0 then α = 0.
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Matrix associated with an inner product

Conversely, if A is a matrix satisfying the above three conditions, then 〈., .〉
defined by (1) is an inner product on V .

Suppose A = B∗B, where B is a matrix with n columns and rank n. Then

〈x , y〉 = y∗B∗Bx

is an inner product because

〈y , x〉 = x∗B∗By = (x∗B∗By)∗ = y∗B∗Bx = 〈x , y〉.
〈x , x〉 = (Bx)∗(Bx) ≥ 0.

If 〈x , x〉 = 0 then Bx = 0 and so x = 0.

We shall later show that any matrix A satisfying the above three
conditions, can be written as B∗B for some non-singular B.
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Concept of length : Norm

Inner combines the concepts of length and angle. We shall discuss
the first concept, length.

Definition

A norm on a (real or complex) vector space V is a map x 7→ ‖x‖ from V
to R satisfying the following three conditions:

1 ‖x‖ ≥ 0 ; x = 0 if ‖x‖ = 0

2 ‖αx‖ = |α|.‖x‖
3 ‖x + y‖ ≤ ‖x‖+ ‖y‖.

A vector space together with a norm on it is called a normed vector
space or normed linear space.
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We shall prove that every inner product induces a norm. We shall give a
family of norms which are not induced by inner product. For this we need
some famous inequalities.
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Concept of angle

Inner combines the concepts of length and angle. We shall discuss
an important special case of the second concept, viz., the angle
between two vectors being 90◦.

Let V be an inner product space, x , y ∈ V . Let A,B be subsets of V .

〈x , y〉 = 0 (we write x ⊥ y) x and y are orthogonal
to each other

x ⊥ y for every pair of distinct vectors
x , y in A

A is orthogonal

A is orthogonal and every vector in A has
norm 1

A is orthonormal

every vector in A is orthogonal to every
vector in B

A is orthogonal to B
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1 x ⊥ y ⇐⇒ y ⊥ x .

2 0 ⊥ x for all x .

3 x ⊥ x ⇐⇒ x = 0.

4 if x ⊥ y , y ⊥ z , then x ⊥ (αy + βz).

5 A set of vectors is orthogonal iff its elements are pair-wise orthogonal.
Is the corresponding statement for linear independence true?.
Linear independence is a property of the entire set whereas
orthogonality is a property of pairs.

6 The empty set is orthonormal (in a vacuous sense).
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Pythagoras theorem

In a real inner product space, if x ⊥ y , then

‖x + y‖2 = ‖x‖2 + ‖y‖2.

The converse is true for real inner product space but not for complex inner
product space.

More generally,

‖
k∑

i=1

xi‖2 =
k∑

i=1

‖xi‖2

if {x1, x2, . . . , xk} is orthogonal. The converse is not true for both real and
complex inner product spaces.
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1 Any orthogonal set A not containing the null vector is linearly
independent.

2 Any orthonormal set is linearly independent.

3 If the subspaces S1, S2, . . . ,Sk are orthogonal to one another then
S1 + S2 + · · ·+ Sk is direct.
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Definition

Let S be a subspace of an inner product space. We say that B is an
orthogonal basis (resp. an orthonormal basis) of S if B is a basis of S
and B is an orthonormal (resp. an orthonormal) set.

We have seen that a basis corre-
sponds to a coordinate system.

An orthonormal basis corresponds
to a system of rectangular coor-
dinates where the reference point
on each axis is at unit distance
from the origin.
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For a given orthonormal basis, finding the coordinates with respect to such
a coordinate system is easy as shown in the following.

Theorem

Let B = {x1, x2, . . . , xn} be an orthonormal basis of an inner product
space V . Then for any x ∈ V , we have

s =
n∑

j=1

〈x , xj〉xj .

Suppose A = {x1, x2, . . . , xk} be an orthogonal set (not a basis) of
non-null vectors in V . Then for any x ∈ V , we call

z := x −
k∑

j=1

〈x , xj〉
〈xj , xj〉

xj

the residual of x with respect to A. The residual z is orthogonal to each
xi .
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Exercise.

Let x1, x2, . . . , xk form an orthonormal set.

1 Show that ‖
∑k

i=1 αixi‖2 =
∑k

i=1 ‖αi‖2.
2 If z is the residual of x on {x1, x2, . . . , xk}, show that

‖z‖2 = ‖x‖2 − ‖
k∑

i=1

〈x , xi 〉xi‖2 = ‖x‖2 −
k∑

i=1

|〈x , xi 〉|2.

3 Bessel’s inequality:

‖x‖2 ≥
k∑

i=1

|〈x , xi 〉|2

for any x . Show also that equality holds iff x ∈ Sp({x1, x2, . . . , xk}).
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Exercise

Let B = {x1, x2, . . . , xk} be an orthonormal set in a finite-dimensional
inner product space V . Show that the following statements are equivalent:

1 B is maximal,

2 〈x , xi 〉 = 0 for i = 1, 2, . . . , k ⇒ x = 0,

3 B generates V ,

4 if x ∈ V then x =
∑k

i=1〈x , xi 〉xi ,
5 if x , y ∈ V then 〈x , y〉 =

∑k
i=1〈x , xi 〉.〈xi , y〉,

6 if x ∈ V then ‖x‖2 =
∑k

i=1 |〈x , xi 〉|2.
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Gram-Schmidt orthogonalization process
Theorem

Let {x1, x2, . . . , xk} be a basis of a subspace S of an inner product space
V . Define z1, z2, . . . , zk inductively by :

zi = xi −
i−1∑
j=1

〈xi , zj〉
〈zj , zj〉

zj (i = 1, 2, . . . , k).

Then z1, z2, . . . , zk is an orthogonal basis of S.

An orthonormal basis of S can be obtained by normalizing the zi ’s.

Note that each zi is the residual of xi with respect to z1, z2, . . . , zi−1 ;
z1, z2, . . . , zk and x1, x2, . . . , xk have the same span.

Let S be a subspace of a finite-dimensional inner product space V .
Starting from any basis of S we can construct an orthonormal basis
by the Gram-Schmidt process: Every subspace S of a
finite-dimensional inner product space has an orthonormal basis.
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Gram-Schmidt process in plane
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Gram-Schmidt process in plane
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Gram-Schmidt process in plane
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Gram-Schmidt process in plane
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Gram-Schmidt process in plane
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Gram-Schmidt process in plane
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Gram-Schmidt process in space
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Gram-Schmidt process in space
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Gram-Schmidt process in space
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Gram-Schmidt process in space
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Gram-Schmidt process in space
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Gram-Schmidt process in space
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Gram-Schmidt process in space
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Gram-Schmidt process in space
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Generalized Gram-Schmidt Process

Let x1, x2, . . . , xs be a given vectors in V , not necessarily basis.

1 Step 1: Set k = 1.

2 Step 2: Compute zk = xk −
∑k−1

j=1
〈xk ,yj 〉

y j
.

3 Step 3: Compute yk := zk
‖zk‖ or 0 according as zk 6= 0 or zk = 0.

4 Step 4: If k < s, increase k by 1 and go to Step 2. Otherwise go to
Step 5.

5 Step 5: For i = 1, 2, . . . , s, the set Bi of all non-null vectors among
y1, y2, . . . , yi is an orthonormal basis of the span Si of {x1, x2, · · · , xi}.

If x1, x2, . . . , x` form an orthonormal set then yj = xj for j = 1, 2, . . . , `.
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Theorem

Let S be a subspace of a finite-dimensional inner product space V . Any
orthonormal subset of S can be extended to an orthonormal basis of S.

Proof. Let A = {x1, x2, . . . , x`} be an orthonormal subset of S . Extend A
to a spanning set {x1, x2, . . . , x`, x`+1, . . . , xs} of S by appending a basis.
Applying the generallized Gram-Schmidt process to {x1, x2, . . . , xs}, get
{y1, y2, . . . , ys}. Then the non-null vectors among y1, y2, . . . , ys form an
orthonormal basis of S which contains A = {x1, x2, . . . , x`}.

We note that the orthonormal basis obtained by the Gram-Schmidt
process from x1, x2, . . . , x` may be quite different from that obtained
from generallized Gram-Schmidt process (a rearrangement of
x1, x2, . . . , x`).
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QR-decomposition.

Let A be an n × s matrix with rank p. Let y1, y2, . . . , ys be the vectors
obtained when generalized Gram-Schmidt process is applied to the
columns of A. For each k = 1, 2, . . . , s,

zk = A∗k −
k−1∑
j=1

〈A∗k , yj〉yj = ‖zk‖yk

and, yk := zk
‖zk‖ or 0 according as zk 6= 0 or zk = 0.

Hence k-th column of A is a linear combination of y1, y2, . . . , ys . That is,

A∗k = 〈A∗k , y1〉y1 + 〈A∗k , y2〉y2 + · · ·+ 〈A∗k , yk−1〉yk−1 + ‖zk‖yk .
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QR-decomposition.

A = [y1 y2 · · · ys ]


‖z1‖ 〈A∗2, y1〉 〈A∗3, y1〉 · · · 〈A∗s , y1〉

0 ‖z2‖ 〈A∗3, y2〉 · · · 〈A∗s , y2〉
0 0 ‖z3‖ · · · 〈A∗s , y3〉
...

...
...

...
...

0 0 0 · · · ‖z3‖

 .

Let U be the s × s upper triangular matrix (uik) where

uik =


〈A∗k , yi 〉 if i < k
‖zk‖ if i = k

0 otherwise

Then A = PU.
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Also if Q is the submatrix of P formed by the non-null columns (the
columns of Q form an orthonormal basis, Q∗Q = Ip) and
R the submatrix of U formed by the corresponding rows, then (Q,R) is a
rank-factorization of A and Q∗Q = Ip.

When A is of full column rank (Q,R) = (P,U) is known as a
QR-decomposition of A.

Uniqueness. QR-factorization is unique if we insist that the diagonal
elements of R are real and positive, i.e., if A is of full column rank,
then there exist unique matrices Q and R such that A = QR,Q∗Q = I , R
is upper triangular and rii > 0 for all i .
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Exercises

1 Let x , y , u and v belong to Rn. Then show that

〈x + iy , u + iv〉 := uT x + vT y

is an inner product on the vector space Cn over R.
What is its connection with the canonical inner product on Cn?

2 Show that 〈x , y〉 = 0 for all y iff x = 0.
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