Advanced Linear Algebra (MA 409)
 Problem Sheet - 2
 Vector Subspaces

1. Label the following statements as true or false.
(a) If V is a vector space and W is a subset of V that is a vector space, then W is a subspace of V.
(b) The empty set is a subspace of every vector space.
2. Determine whether the following sets are subspaces of \mathbb{R}^{3} under the operations of addition and scalar multiplication defined on \mathbb{R}^{3}. Justify your answer.
(a) $W_{1}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}=3 a_{2}\right.$ and $\left.a_{3}=-a_{2}\right\}$
(b) $W_{2}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}=a_{3}+2\right\}$
(c) $W_{3}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: 2 a_{1}-7 a_{2}+a_{3}=0\right\}$
(d) $W_{4}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}+2 a_{2}-3 a_{3}=1\right\}$
(e) $W_{5}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: 5 a_{1}^{2}-3 a_{2}^{2}+6 a_{3}^{2}=0\right\}$
(f) $W_{6}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1} a_{2} a_{3}=0\right\}$
3. Is the set $W_{1}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in F^{n}: a_{1}+a_{2}+\cdots+a_{n}=0\right\}$ a subspace of F^{n} ?
4. Is the set $W_{2}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in F^{n}: a_{1}+a_{2}+\cdots+a_{n}=1\right\}$ a subspace of F^{n} ?
5. Is the set $W=\{f(x) \in P(F): f(x)=0$ or $f(x)$ has degree n$\}$ a subspace of $P(F)$ if $n \geq 1$?
6. Consider the vector space $P(\mathbb{R})$ over the field \mathbb{R}. Which of the following subsets are subspaces of $P(\mathbb{R})$?
(a) the set of all polynomials of degree n;
(b) the set of all polynomials of degree less than or equal to n;
(c) the set of all polynomials of degree greater than or equal to n;
(d) $\{p(x) \in P(\mathbb{R}): p(0)=2017\}$;
(e) $\{p(x) \in P(\mathbb{R}): p(0)=0\}$;
(f) $\{p(x) \in P(\mathbb{R}): p(1729)=p(1887)\}$.
7. Let S be a nonempty set and F be a field. Prove that for any $s_{0} \in S,\left\{f \in \mathcal{F}(S, F): f\left(s_{0}\right)=0\right\}$ is a subspace of $\mathcal{F}(S, F)$.
8. Let S be a nonempty set and F be a field. Let $\mathcal{C}(S, F)$ denote the set of all functions $f \in \mathcal{F}(S, F)$ such that $f(s)=0$ for all but a finite number of elements of S. Prove that $\mathcal{C}(S, F)$ is a subspace of $\mathcal{F}(S, F)$.
9. Is the set of all differentiable real-valued functions defined on \mathbb{R} a subspace of $C(\mathbb{R})$? Justify your answer.
10. Let $C^{n}(\mathbb{R})$ denote the set of all real-valued functions defined on the real line that have a continuous $n^{\text {th }}$ derivative. Prove that $C^{n}(\mathbb{R})$ is a subspace of $F(\mathbb{R}, \mathbb{R})$.
11. Let V be a vector space and W a subset of V. The following are equivalent :
(a) W is a subspace of V;
(b) $0 \in W$, and whenever $a \in F$ and $x, y \in W$, then $a x \in W$ and $x+y \in W$;
(c) $W \neq \varnothing$, and, whenever $a \in F$ and $x, y \in W$, then $a x \in W$ and $x+y \in W$;
(d) $0 \in W$ and $a x+y \in W$ whenever $a \in F$ and $x, y \in W$.
12. Let F_{1} and F_{2} be fields. A function $g \in \mathcal{F}\left(F_{1}, F_{2}\right)$ is called an even function if $g(-t)=g(t)$ for each $t \in F_{1}$ and is called an odd function if $g(-t)=-g(t)$ for each $t \in F_{1}$. Prove that the set V_{e} of all even functions in $\mathcal{F}\left(F_{1}, F_{2}\right)$ and the set V_{o} of all odd functions in $\mathcal{F}\left(F_{1}, F_{2}\right)$ are subspaces of $\mathcal{F}\left(F_{1}, F_{2}\right)$. Also prove that $V_{e}+V_{o}=\mathcal{F}\left(F_{1}, F_{2}\right)$ and $V_{e} \cup V_{o}=\{0\}$.
Consider the vector space $\mathcal{F}(\mathbb{C}, \mathbb{C})$ over the field \mathbb{C}. Which of the following subsets are subspaces of $\mathcal{F}(\mathrm{C}, \mathrm{C})$?
(a) the set of all functions f such that $f(0)=0$;
(b) the set of all real valued functions;
(c) the set of all continuous functions.
13. Let W_{1} and W_{2} be subspaces of a vector space V .
(a) Prove that $W_{1}+W_{2}$ is a subspace of V that contains both W_{1} and W_{2}.
(b) Prove that any subspace of V that contains both W_{1} and W_{2} must also contain $W_{1}+W_{2}$.
14. Show that F^{n} is the direct sum of the subspaces

$$
W_{1}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in F^{n}: a_{n}=0\right\}
$$

and

$$
W_{2}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in F^{n}: a_{1}=a_{2}=\cdots=a_{n-1}=0\right\} .
$$

15. Let W_{1} denote the set of all polynomials $f(x)$ in $P(F)$ such that in the representation

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

we have $a_{i}=0$ whenever i is even. Likewise let W_{2} denote the set of all polynomials $g(x)$ in $P(F)$ such that in the representation

$$
g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}
$$

we have $b_{i}=0$ whenever i is odd. Prove that $P(F)=W_{1} \oplus W_{2}$.
16. Consider the vector space $M_{n \times n}(\mathbb{R})$ over the field R. Which of the following subsets are subspaces of $M_{n \times n}(\mathbb{R})$?
(a) the set of all matrices whose entries are non-negative ;
(b) the set of all invertible matrices ;
(c) the set of all symmetric matrices;
(d) the set of all skew-symmetric matrices;
(e) the set of all upper triangular matrices;
(f) the set of all matrices with trace zero.
17. In $M_{m \times n}(F)$ define $W_{1}=\left\{A \in M_{m \times n}(F): A_{i j}=0\right.$ whenever $\left.i>j\right\}$ and $W_{2}=\{A \in$ $M_{m \times n}(F): A_{i j}=0$ whenever $\left.i \leq j\right\}$. Show that $M_{m \times n}(F)=W_{1} \oplus W_{2}$.
18. Let V denote the vector space consisting of all upper triangular $n \times n$ matrices, and let W_{1} denote the subspace of V consisting of all diagonal matrices. Show that $V=W_{1} \oplus W_{2}$, where $W_{2}=\left\{A \in V: A_{i j}=0\right.$ whenever $\left.i \geq j\right\}$.
19. A matrix M is called skew-symmetric if $M^{t}=-M$. Clearly, a skew-symmetric matrix is square. Let F be a field. Prove that the set W_{1} of all skew-symmetric $n \times n$ matrices with entries from F is a subspace of $M_{n \times n}(F)$. Now assume that F is not of characteristic 2 , and let W_{2} be the subspace of $M_{n \times n}(F)$ consisting of all symmetric $n \times n$ matrices. Prove that $M_{n \times n}(F)=W_{1} \oplus W_{2}$.
20. Let F be a field that is not of characteristic 2 . Define

$$
W_{1}=\left\{A \in M_{n \times n}(F): A_{i j}=0 \text { whenever } i \leq j\right\}
$$

and W_{2} to be the set of all symmetric $n \times n$ matrices with entries from F. Both W_{1} and W_{2} are subspaces of $M_{n \times n}(F)$. Prove that $M_{n \times n}(F)=W_{1} \oplus W_{2}$.
21. Is the set $W_{3}=\left\{\left(a_{1}, a_{2}, a_{3}\right): 2 a_{1}-3 a_{2}+\sqrt{2} a_{3}=0, a_{1}-5 a_{3}=0\right\}$ a subspace of F^{3} ?
22. Show that the following subsets of \mathbb{R} form subspaces of \mathbb{R} over \mathbb{Q} :
(i) Q
(ii) $\{\alpha+\beta \sqrt{2}+\gamma \sqrt{3}: \alpha, \beta, \gamma \in \mathbb{Q}\}$.
23. In each of the following, find out whether the subsets given form subspaces of the vector space V.
(a) $V=\mathbb{R}^{2}, W_{1}=$ the set of all $\left(x_{1}, x_{2}\right)$ such that $x_{1} \geq 0$ and $x_{2} \geq 0$ and $W_{2}=$ the set of all $\left(x_{1}, x_{2}\right)$ such that $x_{1} x_{2} \geq 0$.
(b) $V=\mathcal{F}(\mathbb{R}, \mathbb{R}), W_{1}=\{f: f$ is monotone $\}, W_{2}=\left\{f: f(2)=(f(5))^{2}\right\}$ and $W_{3}=\{f$: $f(2)=f(5)\}$. Note that monotone means either non-decreasing or non-increasing.
(c) $V=\mathcal{F}(\mathbb{R}, \mathbb{R}), V=$ the set of all those functions whose range is finite (i.e., the function takes finitely many values).
(d) $V=\mathcal{F}(X, \mathbb{R})$, where X is the set of all positive integers and $\mathrm{W}=$ the set of all f such that the sequence $\{f(1), f(2), \ldots\}$ converges.
(e) $V=P_{5}(F), W=\{p \in V: p=0$ or degree $p \geq 2\}$.
(f) $V=P(\mathbb{R})$ and $W=\{p \in V: p(5)=0\}$.
(g) $V=P(\mathbb{R})$ and $W=\{p \in V: p(5) \neq 2\}$.
(h) $V=$ the power set of $\mathbb{R}, W=$ the set of all finite subsets of \mathbb{R}.
(i) $V=\mathbb{C}^{n}$ over $\mathbb{R}, W=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{C}^{n}: a_{1}\right.$ is real $\}$.
(j) $V=\mathbb{F}^{n}, W=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{F}^{n}: a_{2}\right.$ is rational $\}$.
24. Let W be the set of all $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ in \mathbb{R}^{5} which satisfy

$$
\begin{aligned}
2 a_{1}-a_{2}+\frac{3}{5} a_{3}-a_{4} & =0 \\
a_{1}+\frac{4}{3} a_{3}-a_{5} & =0 \\
9 a_{1}-3 a_{2}+6 a_{3}-3 a_{4}-3 a_{5} & =0 .
\end{aligned}
$$

Find a finite set of vectors which spans W.
25. Let F be a field and let n be a positive integer $(n \geq 2)$. Let V be the vector space of all $n \times n$ matrices over F .
Which of the following sets of matrices A in V are subspaces of V ?
(a) all invertible A;
(b) all non-invertible A;
(c) all A such that $A B=B A$, where B is some fixed matrix in V;
(d) all A such that $A^{2}=A$.
26. Let W_{1} and W_{2} be subspaces of a vector space V such that $W_{1}+W_{2}=V$ and $W_{1} \cap W_{2}=\{0\}$. Prove that for each vector x in V there are unique vectors x_{1} in W_{1} and x_{2} in W_{2} such that $x=x_{1}+x_{2}$.

