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Overview

The study of approximation theory involves two general types of problems.
One problem arises when a function is given explicitly, but we wish to
find a simpler type of function, such as a polynomial, that can be used to
determine approximate values of the given function.

The Taylor polynomial of degree n about the number x0 is an
excellent approximation to an (n + 1)-times differentiable function f
in a small neighbourhood of x0.

The second problem in approximation theory is concerned with fitting
functions to given data and find the “best” function in a certain class to
represent the data.

The Lagrange interpolating polynomials are approximating
polynomials and they fit certain data. Limitations of these techniques
are considerd, and other avenues of approach are discussed in the lecture.

P. Sam Johnson (NIT Karnataka) Curve Fitting Using Least-Square Principle February 6, 2020 2 / 32



Introduction

In many branches of applied mathematics and engineering sciences, we
come across experiments and problems which involve two variables.

For example, it is known that the speed v of a ship varies with the horse
power p of an engine according to the formula p = a + bv3. Here a and b
are the constants to be determined. For this purpose we take several sets
of readings of speeds and the corresponding horse powers.

The problem is to find the best values of v and p. Thus the general
problem is to find a suitable relation or law that may exist between the
variables x and y from a given set of observed values
(xi , yi ), i = 1, 2, . . . , n. Such relation connecting x and y is known as
empirical law.
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Introduction

The process of finding the equation of the “curve of best fit” which may
be most suitable for predicting the unknown values is known as curve
fitting.

The following are standard methods for curve fitting.

1. Graphical method

2. Method of group averages

3. Method of moments

4. Method of least squares.

We discuss the method of least squares in the lecture.
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Introduction

Usually a mathematical equation is fitted to experimental data by plotting
the data on a “graph sheet” and then passing a straight line through the
data points.

The method has the obvious drawback in that the straight line drawn may
not be unique. The method of least squares is probably the most
systematic procedure to fit a “unique curve” using given data points and
is widely used in practical computations. It can also be easily implemented
on a digital computer.
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Fitting a Straight Line (Linear Form)

Let y = a0 + a1x be the straight line to be fitted to the given data.

The problem of finding the equation of the best linear approximation
requires that values of a0 and a1 be found to minimize

S(a0, a1) =
m∑
i=1

|yi − (a0 + a1xi )|.

This quantity is called the absolute deviation.
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Fitting a Straight Line (Linear Form)

To minimize a function of two variables, we need to set its partial
derivatives to zero and simultaneously solve the resulting equations.

In the case of the absolute deviation, we need to find a0 and a1 with

∂S

∂a0
= 0 and

∂S

∂a1
= 0.

The difficulty is that the absolute-value funciton is not differentiable at
zero, and we may not be able to find solutions to this pair of equations.

The least squares approach to this problem involves determining the best
approximating line when the error involved is the sum of the squares of the
differences between the y -values on the approximating line and the given
y -values.
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Fitting a Straight Line (Linear Form)

Hence, the sum of the squares of the errors,

S =
m∑
i=1

[yi − (a0 + a1xi )]2.

For S to be minimum, we have

∂S

∂a0
= −2

m∑
i=1

[yi − (a0 + a1xi )]

and
∂S

∂a1
= −2

m∑
i=1

xi [yi − (a0 + a1xi )].
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Fitting a Straight Line (Linear Form)

The above equations are simplified to

ma0 + a1

m∑
i=1

xi =
m∑
i=1

yi

and

ma0

m∑
i=1

xi + a1

m∑
i=1

x2i =
m∑
i=1

xiyi .

Since the xi and yi are known quantities, the above two equations (called
the normal equations), can be solved for the two unknown a0 and a1.
Differentiating ∂S

∂a0
and ∂S

∂a1
with respect to a0 to a1 respectively, we find

∂2S

∂a20
and

∂2S

∂a21

and both will be positive at the points. Hence these values provide a
minimum of S .
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Fitting a Straight Line (Linear Form)

Let Sa0a0 = ∂2S
∂a20

,Sa1a1 = ∂2S
∂a21

, Sa0a1 = ∂2S
∂a0∂a1

and Sa1a0 = ∂2S
∂a1∂a0

.

Sa0a0 = −2
m∑
i=1

(−1) = 2m > 0

Sa1a1 = −2
m∑
i=1

xi (−xi ) = 2
m∑
i=1

x2i > 0

Sa1a0 = −2
m∑
i=1

xi (−1) = 2
m∑
i=1

xi

Sa0a0Sa1a1 − (Sa1a0 )
2 = 4m

m∑
i=1

x2i − 4
( m∑

i=1

xi

)( m∑
i=1

xi

)

for minimum we should get Sa0a0Sa1a1 − (Sa1a0 )
2 > 0. This is guaranteed from the

Cauchy-Schwarz inequality ( m∑
i=1

xi

)
<
√
m
( m∑

i=1

x2i

)1/2
.

P. Sam Johnson (NIT Karnataka) Curve Fitting Using Least-Square Principle February 6, 2020 10 / 32



Fitting a Straight Line (Linear Form)

Another approach of finding the equation of the best linear approximation
requires that values of a0 and a1 be found to minimize

S(a0, a1) = max
1≤i≤m

{
|yi − (a0 + a1xi )|

}
.

This is commonly called a minimax problem and cannot be handled by
elementary techniques.

The minimax approach generally assigns too much weight to a bit of
data that is badly in error, whereas the absolute deviation method does
not give sufficient weight to a point that is considerably out of line with
the approximation.

The least squares approach puts substantially more weight on a point
that is out of line with the rest of the data but will not allow that point to
completely dominate the approximation.
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Laws Reduicible to the Linear Law

We give below some of the laws in common use, indicating the way these
can be reduced to the linear form by suitable subsitutions.

Law Transformation Converted Law
y = mxn + c xn = X and y = Y Y = mX + c

y = axn log10 x = X and log10 y = Y Y = nX + c , c = log10 a

y = axn + b log x xn

log x = X and y
log x = Y Y = aX + b

y = aex x = X and log10 y = Y Y = mX + c ,
m = log10 e, log10 a

xy = ax + by y
x = X and y = Y Y = bX + a

Exercise

1. Convert the following equations into linear form

(a) y = x
a+bx

(b) y = ax+b
x

(c) xay = b

(d) y = b
x(x−a)

(e) xy = ax + b
(f) y = ax + bx2

(g) y = ax + bxy .
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Polynomial of the nth degree

Let the polynomial of the nth degree, y = a0 + a1x + a2x
2 + · · ·+ anx

n be
fitted to the data points (xi , yi ), i = 1, 2, . . . ,m. We then have

S =
m∑
i=1

[yi − (a0 + a1xi + a2x
2
i + · · ·+ anx

n
i )]2.

We ge the following normal equations

ma0 + a1

m∑
i=1

xi + a2

m∑
i=1

x2i + · · ·+ an

m∑
i=1

xni =
m∑
i=1

yi

a0

m∑
i=1

xi + a1

m∑
i=1

x2i + · · ·+ an

m∑
i=1

xn+1
i =

m∑
i=1

xiyi

...
...

...
...

...
...

a0

m∑
i=1

xni + a1

m∑
i=1

xn+1
i + · · ·+ an

m∑
i=1

x2ni =
m∑
i=1

xni yi .
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x y xy · · · xny

x0 y0 x0y0 · · · xn0 y0
x1 y1 x1y1 · · · xn1 y1
...

...
...

...
...

xm ym xmym · · · xnmym∑m
i=1 xi

∑m
i=1 yi

∑m
i=1 xiyi · · ·

∑m
i=1 x

n
i yi

After substituting the values of

m∑
i=1

xi ,
m∑
i=1

yi ,
m∑
i=1

xiyi and
m∑
i=1

xni yi

in the above normal equations, we get (n + 1) equations in (n + 1)
unknowns. Solving them will give the values of a0, a1, . . . , an. Thus the
polynomial of the nth degree, y = a0 + a1x + a2x

2 + · · ·+ anx
n be fitted

to the data points (xi , yi ), i = 1, 2, . . . ,m.
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Plausible (Feasible) Values

Consider the m linear equations in n unknowns :

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
... =

...

am1x1 + am2x2 + · · ·+ amnxn = bm.

We find the values of unknowns x1, x2, . . . , xn as nearly as possible.

Applying the principle of least squares, these values can be obtained by
minimizing S =

∑m
i=1(ai1x1 + · · ·+ ainxn − bi )

2 using the conditions of
minima,

∂S

∂x1
= 0,

∂S

∂x2
= 0,

... ,
∂S

∂xn
= 0.
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We get n equations. Solving these equations, we get most plausible
(feasible) values of x1, x2, . . . , xn. One can verify that at the values of
x1, x2, . . . , xn, determinant of every principal minor of the following matrix
is positive : 

Sa0a0 Sa0a1 . . . Sa0an
Sa1a0 Sa1a1 . . . Sa1an

...
...

...
...

Sana0 Sana1 . . . Sanan

 .

Exercise
2. Find the most plausible values of x , y and z from the equations

x + 3y − 3z = −14
4x + y + 4z = 21

3x + 2y − 5z = 5

x − y + 2z = 3

by forming the normal equations.
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Nonlinear Curve Fitting : Power Function

We consider a power function, y = axc to fit the given data points

(xi , yi ), i = 1, 2, . . . ,m.

Taking logarithms of both sides, we obtain the relation

log y = log a + c log x ,

which is of the form Y = a0 + a1X , where Y = log y , a0 = log a, a1 = c
and X = log x .

Hence the procedure outlined earlier can be followed to evaluate a0 and a1.
Then a and c can be calculated from the formulae a0 = log a and c = a1.
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Nonlinear Curve Fitting : Exponential function

Let the curve
y = a0e

a1x

be fitted to the given data.

Then, as before, taking logarithms of both sides, we get

log y = log a0 + a1x ,

which can be written in the form

Z = A + Bx ,

where Z = log y ,A = log a0 and B = a1.

The problem therefore reduces to finding a least-squares straight line
through the given data.
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Fitting the data with given curve

Let the set of data points be

(xi , yi ), i = 1, 2, . . . ,m,

and let the curve given by
y = f (x)

be fitted to this data. At x = xi , the experimental (or observed) value of
the ordinate is yi and the corresponding value on the fitting curve is f (xi ).

If ei is the error of approximation at x = xi , then we have

ei = yi − f (xi ).
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Fitting the data with given curve

If we write

S = [y1 − f (x1)]2 + [y2 − f (x2)]2 + · · ·+ [ym − f (xm)]2

= e21 + e22 + · · ·+ e2m

then the method of least squares consists in minimizing S , i.e., the sum of
the squares of the errors.

Nodes (xi , yi ) are in red coloured points.

The curve y = f (x) fitted with the data
is shown in blue.
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Weighted Least Squares Approximation

We have minimized the sum of squares of the errors. A more general
approach is to minimize the weighted sum of the squares of the errors
taken over all data points. If this sum is denoted by S , then we have

S = W1[y1 − f (x1)]2 + W2[y2 − f (x2)]2 + · · ·+ Wm[ym − f (xm)]2

= W1e
2
1 + W2e

2 + · · ·+ Wme
2
m.

In the above equation, the Wi are prescribed positive numbers and are
called weights.

A weight is prescribed according to the relative accuracy of a data
point. If all the data points are accurate, we set Wi = 1 for all i . We
consider again the linear and nonlinear cases below.
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Linear Weighted Least Squares Approximation

Let y = a0 + a1x be the Straight line to be fitted to the given data points,
(x1, y1), . . . , (xm, ym). Then

S(a1, a2) =
m∑
i=1

Wi [yi − (a0 + a1xi )]2.

For maxima or minima, we have

∂S

∂a0
=
∂S

∂a1
= 0

which gives

∂S

∂a0
= −2

m∑
i=1

Wi [yi − (a0 + a1xi )] = 0

and
∂S

∂a1
= −2

m∑
i=1

Wi [yi − (a0 + a1xi )]xi = 0.
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Simplification yields the system of equations for a0 and a1:

a0

m∑
i=1

Wi + a1

m∑
i=1

Wixi =
m∑
i=1

Wiyi

and

a0

m∑
i=1

Wixi + a1

m∑
i=1

Wix
2
i =

m∑
i=1

Wixiyi

which are the normal equations in this case and are solved to obtain a0
and a1.

Suppose that in data, a point (x0, y0) is known to be more reliable
than the others. Then we prescribe a weight (say, 10) corresponding
to this point only and all other weights are taken as unity.

We consider with an increased weight, say 100, corresponding to
(x0, y0), then the approximation becomes better when the
weight is increased.
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Nonlinear Weighted Least Squares Approximation

We now consider the least squares approximation of a set of m data points

(xi , yi ), i = 1, 2, . . . ,m,

by a polynomial of degree n < m. Let

y = a0 + a1x + a2x
2 + · · ·+ anx

n

be fitted to the given data points. We then have

S(a0, a1, . . . , an) =
m∑
i=1

Wi [yi − (a0 + a1xi + · · ·+ anx
n
i )]2.

If a minimum occurs at (a0, a1, . . . , an), then we have

∂S

∂a0
=
∂S

∂a1
=
∂S

∂a2
= · · · =

∂S

∂an
= 0.
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These conditions yield the normal equations

a0

m∑
i=1

Wi + a1

m∑
i=1

Wixi + · · ·+ an

m∑
i=1

Wix
n
i =

m∑
i=1

Wiyi

a0

m∑
i=1

Wixi + a1

m∑
i=1

Wix
2
i + · · ·+ an

m∑
i=1

Wix
n+1
i =

m∑
i=1

Wixiyi

...
...

...
...

...

a0

m∑
i=1

Wix
n
i + a1

m∑
i=1

Wix
n+1
i + · · ·+ an

m∑
i=1

Wix
2n
i =

m∑
i=1

Wix
n
i yi .

There are (n + 1) equations in (n + 1) unknowns a0, a1, . . . , an.

If the xi ’s are distinct with n < m, then the equations possses a ’unique’
solution.

P. Sam Johnson (NIT Karnataka) Curve Fitting Using Least-Square Principle February 6, 2020 25 / 32



Method of Least Squares for Continuous Functions

We considered the least squares approximations of discrete data. We shall
discuss the least squares approximation of a continuous function on [a, b].

The summations in the normal equations are now replaced by definite
integrals.

Let y(x) = a0 + a1x + a2x
2 + · · ·+ anx

n be chosen to minimize

S(a0, a1, . . . , an) =

∫ b

a
W (x)[y(x)− (a0 + a1x + a2x

2 + · · ·+ anx
n)]2dx .

The necessary conditions for minimum are given by

∂S

∂a0
=
∂S

∂a1
= · · · =

∂S

∂an
= 0.
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Hence

−2

∫ b

a
W (x)[y(x)− (a0 + a1x + a2x

2 + · · ·+ anx
n)]dx = 0

−2

∫ b

a
W (x)[y(x)− (a0 + a1x + a2x

2 + · · ·+ anx
n)]xdx = 0

−2

∫ b

a
W (x)[y(x)− (a0 + a1x + a2x

2 + · · ·+ anx
n)]x2dx = 0

...
...

...
...

...
...

−2

∫ b

a
W (x)[y(x)− (a0 + a1x + a2x

2 + · · ·+ anx
n)]xndx = 0
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Rearrangement of terms gives the system

a0

∫ b

a
W (x)dx + a1

∫ b

a
xW (x)dx + · · ·+ an

∫ b

a
xnW (x)dx =

∫ b

a
W (x)y(x)dx

a0

∫ b

a
xW (x)dx + a1

∫ b

a
x2W (x)dx + · · ·+ an

∫ b

a
xn+1W (x)dx =

∫ b

a
xW (x)y(x)dx

...
...

...
...

...
...

...

a0

∫ b

a
xnW (x)dx + a1

∫ b

a
xn+1W (x)dx + · · ·+ an

∫ b

a
x2nW (x)dx =

∫ b

a
xnW (x)y(x)dx .

The system comprises (n + 1) normal equations in (n + 1) unknowns,
a0, a1, a2, . . . , an and they always possess a ’unique’ solution.

Exercise

3. Construct a least squares quadratic approximation to the function
y(x) = sin x on [0, π/2] with respect to the weight function
W (x) = 1.
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Exercises

4. If P is the pull required to lift a load W by means of a pulley block,
find a linear law of the form P = mW + C , connecting P and W ,
using the following data.

P (in kg.) 12 15 21 25

W (in kg.) 50 70 100 120

Compute P when W = 150 kg.

5. By the method of least squares, find the straight line that best fits
the following data.

x 1 2 3 4 5

y 14 27 40 55 68

6. Fit a straight line to the following data and estimate the value of y
corresponding to x = 6.

x 0 5 10 15 20 25

y 12 15 17 22 24 30
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Exercises

7. Fit a second degree parabola by taking x as the independent variable.

x 1 1 2 3 4

y 1 5 10 22 38

8. Using the method of least squares, fit a curve of the form y = abx to
the following data.

x 1 2 3 4

y 4 11 35 100

9. Fit a curve of the form y = abx to the following data.

Year (x) 1951 1952 1953 1954 1955 1956 1957

Production
in tone (y) 201 263 314 395 427 504 612

10. Fit a curve of the form y = axb for the following data, where a and b
are constants.

x 61 26 7 10

y 350 400 500 600
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Exercises

11. Using the principle of least squares, fit an equation of the form
y = aebx (a > 0) to the data.

x 1 2 3 4

y 1.65 2.7 4.5 7.35

12. The pressure and volume of a gas are related by the equation
pcλ = k (λ and k are constants). Fit this equation for the following
data, using the principle of least squares.

p 0.5 1.0 1.5 2.0 2.5 3.0

v 1.62 1.00 0.75 0.62 0.52 0.46

13. Two quantities of x and y are measured and corresponding values are
given in the following table.

x 20 40 60 80 100 120

y 5.5 9.1 14.9 22.8 33.3 46

Find a second degree parabola to the data.
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