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Overview

Let A be an m × n matrix and x be an n-dimensional vector.

When A multiplies x , we can think of it as transforming that vector into
a new vector Ax . This happens at every point x of the n-dimensional
space Rn.

The whole space is transformed, or “mapped into,” by the matrix A.

We disuss transformtion of this kind, in details.
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Streching \ Positive Scaling

We start with four examples of the transformations that come from
matrices. A multiple of the identity matrix, A = cI , streches every vector
by the same factor c . The whole space expands or contracts (or somehow
goes through the origin and out the opposite side, when c is negative).

Positive Scaling
Enlargement / Shrink Scalar Factor k > 0, Centre (0, 0)
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Streching \ Negative Scaling

Negative Scaling

Enlargement / Shrink Scalar Factor k < 0, Centre (0, 0)
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Rotation

A rotation matrix turns the whole space around the origin. The following
example turns all vectors in the triangle with vertices A(2, 1),B(2, 3) and
C (3, 1) through 90◦.
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Rotation by 270◦ : Figure 1
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Rotation by 270◦ : Figure 2
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Rotation by 270◦ : Figure 3
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Rotation by 270◦ : Figure 4
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Rotation by 270◦ : Figure 5
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Rotation by 270◦ : Figure 6
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Rotation by 270◦ : Figure 7
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Rotation by 270◦ : Figure 8
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Rotation by 270◦ : Figure 9
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Rotation by 270◦ : Figure 10
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Rotation by 270◦ : Figure 11
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Rotation by 270◦ : Figure 12
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Reflection about the line y = x

A reflection matrix transforms every vector into its image on the opposite
side of a mirror. In this example the mirror is the 45◦ line y = x , and a
point (2, 2) is unchanged. A point like (2, 1) is reversed to (1, 2). On a
combination like (1, 1) + (2, 1) = (3, 2), the matrix leaves one part and
reverses the other part. The reflection matrix is also a permutation matrix!
It is algebraically so simple, sending (x , y) to (y , x).
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Reflection about the line y = −x

Reflection
About the line y = −x
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Reflections About x and y axes

Reflection
About x-axis

Reflection
About y -axis
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