Computational Linear Algebra - MA 703 Problem Sheet 5

- 1. Check whether the following are inner products or not.
 - (a) $\langle z, w \rangle := \operatorname{Re}(z\overline{w})$ on \mathbb{C} .
 - (b) $\langle (x_1, x_2), (y_1, y_2) \rangle := y_1(2x_1 + x_2) + y_2(x_1 + x_2)$ on \mathbb{R}^2 .
 - (c) $\langle A, B \rangle := \operatorname{tr}(AB^t)$ on $\mathbb{M}(n, \mathbb{R})$. The trace of the matrix A, $\operatorname{tr}(A)$ is the sum of diagonals.
- 2. Prove that two nonzero vectors orthogonal to each other are linearly independent.
- 3. Say true or false. Zero is the only vector, orthogonal to every vector of *V*.
- 4. Let W_i , i = 1, 2, be vector subspaces of V. Assume that each vector W_1 is orthogonal to W_2 and vice-versa. Then prove that $W_1 \cap W_2 = \{0\}$.
- 5. Let $x = (\alpha, \beta, \gamma)$ be a nonzero vector in \mathbb{R}^3 .
 - (a) Find a basis of $W := x^{\perp}$.
 - (b) Give a pair of equations whose solution set is the line joining the origin and *v*.
- 6. Give an example of a 2×2 matrix whose columns are orthogonal but not the rows.
- 7. Apply the Gram-Schmidt process to the vectors $v_1 = (1,0,3)$, $v_2 = (2,2,0)$ and $v_3 = (3,1,2)$ to find an orthonormal basis for \mathbb{R}^3 .
- 8. Find the values of *a* for which the planes ax y + z = 1 and 3ax + ay 2z = 5 are perpendicular.
- 9. Find the norm and angle between the vectors (2, 3, -4, 5) and (-5, 6, 7, 2). State Cauchy-Schwartz inequality.
- 10. Apply the Gram-Schmidt algorithm to the columns of the matrix $\begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix}$. Use the order in which they occur in the matrix.
- 11. Let x_1, x_2, \ldots, x_k form an orthonormal set.
 - (a) Show that $\|\sum_{i=1}^{k} \alpha_i x_i\|^2 = \sum_{i=1}^{k} \|\alpha_i\|^2$.
 - (b) If *z* is the residual of *x* on $\{x_1, x_2, \ldots, x_k\}$, show that

$$||z||^{2} = ||x||^{2} - ||\sum_{i=1}^{k} \langle x, x_{i} \rangle x_{i}||^{2} = ||x||^{2} - \sum_{i=1}^{k} |\langle x, x_{i} \rangle|^{2}.$$

(c) **Bessel's inequality:**

$$\|x\|^2 \ge \sum_{i=1}^k |\langle x, x_i \rangle|^2$$

for any *x*. Show also that equality holds iff $x \in Sp(\{x_1, x_2, ..., x_k\})$.

- 12. Show that $\langle x, y \rangle = 0$ for all *y* iff x = 0.
- 13. Let $B = \{x_1, x_2, ..., x_k\}$ be an orthonormal set in a finite-dimensional inner product space *V*. Show that the following statements are equivalent:
 - (a) *B* is maximal,
 - (b) $\langle x, x_i \rangle = 0$ for $i = 1, 2, \dots, k \Rightarrow x = 0$,
 - (c) *B* generates *V*,
 - (d) if $x \in V$ then $x = \sum_{i=1}^{k} \langle x, x_i \rangle x_i$,
 - (e) if $x, y \in V$ then $\langle x, y \rangle = \sum_{i=1}^{k} \langle x, x_i \rangle . \langle x_i, y \rangle$,
 - (f) if $x \in V$ then $||x||^2 = \sum_{i=1}^k |\langle x, x_i \rangle|^2$.
- 14. Let x, y, u and v belong to \mathbb{R}^n . Then show that

$$\langle x + iy, u + iv \rangle := u^T x + v^T y$$

is an inner product on the vector space \mathbb{C}^n over \mathbb{R} . What is its connection with the canonical inner product on \mathbb{C}^n ?

- 15. Prove that every orthogonal set of nonzero vectors in an inner product space is linearly independent. Say true or false, in \mathbb{R}^n , there does not exist an orthogonal set of n + 1 nonzero vectors.
- 16. Prove that an orthogonal set of *n* nonzero vectors in \mathbb{R}^n is a basis for \mathbb{R}^n .
- 17. In \mathbb{R}^n , use the standard inner product. What is the orthogonal projection of the vector x = (1, 2, 3) on the vector y = (3, 2, 1)?
- 18. Is the vector x = (3, 2, 1) in the orthogonal complement of the pair of vectors $\{u, v\}$, where v = (5, -2, -1) and v = (2, -3, 15)?
- 19. Let *A* be a subset of an inner product space *V*. Prove that the orthogonal complement of *A* is the same as the orthogonal complement of *span*(*A*).
- 20. Explain why the hypotheses ||x + y|| = ||y|| and $x \neq 0$ lead to $\langle x, y \rangle < 0$.