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A sheet of corrugated roofing is constructed by pressing a flat sheet of
aluminum into one whose cross section has the form of a sine wave.

A corrugated sheet 4 ft long is needed, the height of each wave is 1 in.
from the center line, and each wave has a period of approximately 2π in.
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The problem of finding the length of the initial flat sheet is one of
determining the length of the curve given by f (x) = sin x from x = 0 in.
and x = 48 in. From calculus we know that this length is

L =

∫ 48

0

√
1 + [f ′(x)]2dx =

∫ 48

0

√
1 + cos2 xdx ,

so the problem reduces to evaluating this integral.

Although the sine function is one of the most common mathematical
functions, the calculation of its length involves an elliptic integral of the
second kind, which cannot be evaluated by ordinary methods.

One reason for using algebraic polynomials to approximate an arbitrary set
of data is that, given any continuous function defined on a closed interval,
a polynomial exists that is arbitrarily close to the function at every point in
the interval.
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Also, the derivatives and intervals of polynomials are easily obtained and
evaluated. It should not be surprising, then, that most procedures for
approximating integrals and derivatives use the polynomials that
approximate the function.

The derivative of the function f at x0 is

f ′(x) = lim
h→0

f (x0 + h)− f (x0)

h
.

This formula gives an obvious way to generate an approximation of f ′(x).

That is, we simply compute

f (x0 + h)− f (x0)

h

for small values of h.
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To approximate f ′(x0), suppose first that x0 ∈ (a, b), where f ∈ C 2[a, b],
and that x1 = x0 + h for some h 6= 0 that is sufficiently small to ensure
that x1 ∈ [a, b].

We construct the first Lagrange polynomial

P(x) =
(x − x0 − h)

−h
f (x0) +

(x − x0)

h
f (x0 + h)

for f determined by x0 and x1, with its error

f (x) = P(x) +
(x − x0)(x − x0 − h)

2
f ′′(ξ(x))

for some ξ(x) in [a, b].

Differentiating gives

f ′(x) =
f (x0 + h)− f (x0)

h
f (x0) + Dx

[
(x − x0)(x − x0 − h)

2
f ′′(ξ(x))

]
.
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So
f ′(x) =

f (x0 + h) − f (x0)

h
f (x0) +

2(x − x0) − h

2
f ′′(ξ(x)) +

(x − x0)(x − x0 − h)

2
Dx [f ′′(ξ(x))],

hence

f ′(x) ≈ f (x0 + h)− f (x0)

h
.

One difficulty with this formula is that we have no information about

Dx [f ′′(ξ(x))],

so the truncation error cannot be estimated.

When x is x0, however, the coefficient of Dx [f ′′(ξ(x))] is 0, and the
formula simplifies to

f ′(x0) =
f (x0 + h)− f (x0)

h
− h

2
f ′′(ξ).
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For small values of h, the difference quotient

f (x0 + h)− f (x0)

h

can be used to approximate f ′(x0) with an error bounded by M|h|
2 , where

M is a bounded on |f ′′(x)| for x ∈ [a, b].

This formula is known as the forward difference formula if h > 0 and the
backward difference formula if h < 0.

To obtain general derivative approximation formulas, suppose that
{x0, x1, . . . , xn} are (n + 1) distinct numbers in some interval I and that
f ∈ Cn+1(I ). Then

f (x) =
n∑

k=0

f (xk)Lk(x) +
(x − x0) · · · (x − xn)

(n + 1)!
f (n+1)(ξ(x)),

for some ξ(x) in I , where Lk(x) denotes the kth Lagrange coefficient
polynomial for f at x0, x1, . . . , xn.
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Differentiating this expression gives

f ′(x) =
n∑

k=0

f (xk )L′k (x) + Dx

[
(x − x0) · · · (x − xk )

(n + 1)!
f (n+1)(ξ(x))

]
+ +

(x − x0) · · · (x − xk )

(n + 1)!
Dx

[
f (n+1)(ξ(x))

]
.

We again have a problem estimating the truncation error unless x is one
of the numbers xj .

In this case, the term multiplying Dx

[
f (n+1)(ξ(x))

]
is 0, and the formula

becomes

f ′(xj) =
n∑

k=0

f (xk)L′k(x) +
f (n+1)(ξ(x))

(n + 1)!

n∏
k=0
k 6=j

(xj − xk)

which is called an (n + 1)-point formula to approximate f ′(xj).

P. Sam Johnson (NITK) Introduction to Numerical Differentiation & Richardson’s InterpolationOctober 21, 2014 8 / 25



In general, using more evaluation points in the above equation produces
greater accuracy.

We first derive some useful three-point formulas and consider aspects of
their errors. Hence

f ′(xj ) =

[
2xj − x1 − x2

(x0 − x1)(x0 − x2)

]
f (x0) +

[
2xj − x0 − x2

(x1 − x0)(x1 − x2)

]
f (x1) +

[
2xj − x0 − x1

(x2 − x0)(x2 − x1)

]
f (xk ) +

1

6
f (3)(ξj )

2∏
k=0
k 6=j

(xj − xk )

for each j = 0, 1, 2, where the notation ξj indicates that this point
depends on xj .

The three formulas the above equation become especially useful if the
nodes are equally spaced, that is, when

x1 = x0 + h and x2 = x0 + 2h, for some h 6= 0.
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Since x1 = x0 + h and x2 = x0 + 2h, these formulas can also be expressed
as

f ′(x0) =
1

h

[
−3

2
f (x0) + 2f (x0 + h)− 1

2
f (x0 + 2h)

]
+

h2

3
f (3)(ξ0),

f ′(x0 + h) =
1

h

[
−1

2
f (x0) +

1

2
f (x0 + 2h)

]
+

h2

6
f (3)(ξ1),

and

f ′(x0 + 2h) =
1

h

[
1

2
f (x0)− 2f (x0 + h) +

3

2
f (x0 + 2h)

]
+

h2

3
f (3)(ξ2).
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As a matter of convenience, the variable substitution x0 for x0 + h is used
in the middle equation to change this formula to an approximation fof
f ′(x0).

A similar change, x0 for x0 + 2h, is used in the last equation. This gives
three formulas for approximating f ′(x0)

f ′(x0) =
1

2h

[
− 3f (x0) + 4f (x0 + h)− f (x0 + 2h) +

h2

3
f (3)(ξ0),

f ′(x0) =
1

2h

[
− f (x0 − h) + f (x0 + h)

]
+

h2

6
f (3)(ξ1),

and

f ′(x0) =
1

2h

[
f (x0 − 2h)− 4f (x0 + h) + 3f (x0)

]
+

h2

3
f (3)(ξ2).
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Finally, note that since the last of these equations can be obtained from
the first by simply replacaing h with −h, there are actually only two
formulas

f ′(x0) =
1

2h

[
− 3f (x0) + 4f (x0 + h)− f (x0 + 2h)

]
+

h2

3
f (3)(ξ0), (1)

where ξ0 lies between x0 and x0 + 2h, and

f ′(x0) =
1

2h

[
f (x0 + h)− f (x0 − h)

]
+

h2

6
f (3)(ξ1), (2)

where ξ1 lies between x0 − h and x0 + h.
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Although the erros in both equations (1) and (2) are O(h2) , the error in
equation (2) is approximately half the error in (1). This is because
equation (2) uses data on both sides of x0 and equation (1) uses data on
only one side.

Note also that f needs to be evaluated at only two points in equation (2),
whereas in equation (1) three evaluations are needed.

The approximation in equation (1) is useful near the ends of an interval,
since information about f outside the interval may not be available.

The methods presented in equations (1) and (2) are called three-point
formulas.
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Similarly, there are five-point formulas that involve evaluating the
function at two more points, whose error term is O(h4). One is

f ′(x0) =
1

22h

[
f (x0 − 2h)− 8f (x0 − h)− 8f (x0 + 2h)

]
+

h4

30
f (5)(ξ),

where ξ lies between x0 + 2h and x0 + 2h.

The other five point formula is useful for end point approximations. It is

f ′(x0) =
1

22h

[
− 25f (x0) − 48f (x0 + h) − 36f (x0 + 2h) + 16f (x0 + 3h) − 3f (x0 + 4h) +

h4

5
f (5)(ξ),

where ξ lies between x0 and x0 + 4h.

Left end point approximations are found using this formula with h > 0
and right end point approximations with h < 0.
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Methods can also be derived to find approximations to higher derivatives
of a function using only tabulated values of the function at various points.
The derivation is algebraically tedious, however, so only a representative
procedure will be presented.

Expand a funtion f in a third Taylor polynomial about a point x0 and
evaluate x0 + h and x0 − h. Then

f (x0 + h) = f (x0) + f ′(x0) +
1

2
f ′′(x0)h2 +

1

6
f ′′′(x0)h3 +

1

24
f (4)(ξ1)h4

and

f (x0 − h) = f (x0)− f ′(x0) +
1

2
f ′′(x0)h2 − 1

6
f ′′′(x0)h3 +

1

24
f (4)(ξ−1)h4,

where x0 − h < ξ−1 < x0 < ξ1 < x0 + h.
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If we add these equations, the terms involving f ′(x0) and f ′′(x0) cancel
and so,

(x0 + h) + f (x0 − h) = 2f (x0) + f ′′(x0)h2 +
1

24

[
f (4)(ξ1) + f (4)(ξ−1)

]
h4.

Solving this equation for f ′′(x0) gives

f ′′(x0) =
1

h2

[
f (x0 − h)− 2f (x0) + f (x0 + h)

]
− h2

24

[
f (4)(ξ1) + f (4)(ξ−1)

]
.
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Suppose f (4) is continuous on [x0 − h, x0 + h].

Since 1
h2

[
f (4)(ξ1) + f (4)(ξ−1)

]
is between f (4)(ξ1) and f (4)(ξ−1), the

intermediate value theorem implies that a number ξ exists between ξ and
ξ−1, and hence in (x0 − h, x0 + h), with

f (4)(ξ) =
1

2

[
f (4)(ξ1) + f (4)(ξ−1)

]
.

Thus

f ′′(x0) =
1

h2

[
f (x0 − h)− 2f (x0) + f (x0 + h)

]
− h2

12
f (4)(ξ),

for some ξ, where x0 − h < ξ < x0 + h.

Since f (4) is continuous on [x0 − h, x0 + h] it is also bounded, so the
approximation is O(h2).
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Richardson’s Extrapolation

Richardson’s extrapolation is used to generate high-accuracy results while
using low-order formulas.

Extrapolation can be applied whenever it is known that an approximation
technique has an error term with a predictable form, one that depends on
a parameter, usually the step size h.

Suppose that for each number h 6= 0 we have a formula N(h) that
approximates an unknown value M and that the truncation error involved
with the approximation has the form

M − N(h) = K1h + K2h
2 + K3h

3 + · · · ,

for some collection of unknown constants K1,K2,K3, . . ..
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Since the truncation error is O(h), we would expect, for example, that

M − N(0.1) ≈ 0.1 K1, M − N(0.01) ≈ 0.01 K1,

and in general, M − N(h) = K1 h, unless there was a large variation in
magnitude among the constants K1,K2,K3, . . ..

The object of extrapolation is to find an easy way to consider the rather
inaccurate O(h) approximations in an appropriate way to produce formulas
with a higher-order truncation error. Suppose, for example, we can
combine the N(h) formulas to produce an O(h2) approximation formula,
Ñ(h), for M with

M − Ñ(h) = K̃1h + K̃2h
2 + K̃3h

3 + · · · ,

for some, again unknown, collection of constants K̃1, K̃2, K̃3, . . .. Then we
have

M − Ñ(0.1) ≈ 0.01 K̃2, M − Ñ(0.01) ≈ 0.0001 K̃2,

and so on.
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If the constants K1 and K̃2 are roughly the same magnitude, then the
Ñ(h) approximations.

The extrapolation continues by combining the Ñ(h) approximations in a
manner that produces formulas with O(h3) truncation error, and so on.

To see specifically how we can generate these higher-order formulas, let us
consider the formula for approximating M of the form

M = N(h) + K1h + K2h
2 + K3h

3 + · · · .

Since the formula is assumed to hold for all positive h, consider the result
when we replace the parameter h by half its value. Then we have the
formula

M = N

(
h

2

)
+ K1

h

2
+ K2

h2

4
+ K3

h3

8
+ · · · .
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Eliminating the term K1, we get

M =

[
2N

(
h

2

)
− N(h)

]
+ K2

(
h2

2
− h2

)
+ K3

(
h3

4
− h3

)
+ · · · .

To facilitate the discussion, we define N1(h) ≡ N(h) and

N2(h) =

[
2N1

(
h

2

)
− N1(h)

]
= N1

(
h

2

)
+

[
N1

(
h

2

)
− N1(h)

]
.

Then we have the O(h2) approximation formula for M:

M = N2(h)− K2

2
h2 − 3K3

3
h3 − · · · .

If we now replace h by h/2 in this formula, we have

M = N2

(
h

2

)
− K2

8
h2 − 3K3

32
h3 − · · · .
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Eliminating h2 terms, we get

3M = 4N2

(
h

2

)
− N2(h) +

3K3

8
h3 + · · · ,

and dividing by 3 gives an O(h3) formula for approximating M:

M =

[
N2

(
h

2

)
+

N2(h/2)− N2(h)

3

]
+

K3

8
h3 + · · · .

By defining

N3(h) ≡ N2

(
h

2

)
+

N2(h/2)− N2(h)

3
,

we have the O(h3) formula :

M = N3(h) +
K3

8
h3 + · · · .
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The process is continued by construction an O(h4) approximation

N4(h) = N3

(
h

2

)
+

N3(h/2)− N3(h)

7
,

an O(h5) approximation

N5(h) = N4

(
h

2

)
+

N4(h/2)− N4(h)

15
,

and so on.

In general, if M can be written in the form

M = N5(h) +
m−1∑
j=1

Kjh
j + O(hm),

then for each j = 2, 3, . . . ,m, we have an O(hj approximation of the form

Nj(h) = Nj−1

(
h

2

)
+

Nj−1(h/2)− Nj−1(h)

2j−1 − 1
.
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These approximations are generated by rows in the order indicated by the
numbered entries in the following table. This is done to take best
advantage of the highest-order formulas.

O(h) O(h2) O(h3) O(h4)

1: N1(h) ≡ N(h)

2: N1

(
h
2

)
≡ N

(
h
2

)
3: N2(h)

4: N1

(
h
4

)
≡ N

(
h
4

)
5: N2

(
h
2

)
6: N3(h)

7: N1

(
h
8

)
≡ N

(
h
8

)
8: N2

(
h
4

)
9: N3

(
h
2

)
10: N4(h)

Extrapolation can be applied whenever the truncation error for a formula
has the form

m−1∑
j=1

Kjh
αj + O(hαm),

for a collection of constants Kj and when α1 < α2 < α3 < · · · < αm.
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