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Definition

Let V be an inner product space, x , y ∈ V . Let A,B be subsets of V .

〈x , y〉 = 0 (we write x ⊥ y) x and y are orthogonal
to each other

x ⊥ y for every pair of distinct vectors
x , y in A

A is orthogonal

A is orthogonal and every vector in A has
norm 1

A is orthonormal

every vector in A is orthogonal to every
vector in B

A is orthogonal to B

Definition

Let S be a subspace of an inner product space. We say that B is an
orthogonal basis (resp. an orthonormal basis) of S if B is a basis of S
and B is an orthonormal (resp. an orthonormal) set.

P. Sam Johnson (NITK) Gram-Schmidt Orthogonalization Process November 16, 2014 2 / 31



Theorem

Every inner product space has an orthogonal (orthonormal) basis.

Proof. Start by selecting any nonzero vector v1 in V . If V contains a
nonzero vector v2 that is orthogonal to v1, put it in the basis. If V contains
a nonzero vector v3 that is orthogonal to v1 and v2, put it in the basis.

Proceed in this way. The chosen points v1, v2, . . . will be mutually
orthogonal. The generated set is an orthogonal set, which is also a linearly
independent. Thus, if V is n dimensional, the selection process certainly
must stop after n steps.

If each vector vi is normalized, then the set is an orthonormal basis for V .
Normalizing a vector v means replacing v by v/‖v‖. The norm of a vector
is derived from the inner product : ‖x‖ =

√
〈x , x〉.

A concrete realilzation of a process similar to the one just described is the
Gram-Schmidt process. It operates in any finite dimensional inner
product space and produces an orthonormal basis.

P. Sam Johnson (NITK) Gram-Schmidt Orthogonalization Process November 16, 2014 3 / 31



Little information about Erhard Schmidt

Erhard Schmidt (1876-1959) was another important
mathematician who serves as a professor of mathe-
matics in several German universities. His advisor was
David Hilbert (who formulated the theory of Hilbert
spaces). Schmidt became an expert in the eigen func-
tions that arise in the study of integral equations and
partial differntial equations, and he was one of the
first to make use of infinite dimensional vector spaces
in his work.

Erhard Schmidt

He introduced the notation ‖.‖ for the magnitude of a vector, 〈x , y〉 for
the inner product. He proved the Phythagorean theorem in abstract inner
product spaces and many other results in this subject while it was in its
infancy and new to almost all mathematicians. In a 1907 paper, Schmidt
described what is now called the Gram-Schmidt process.
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Little information about Jorgen Pedersen Gram

Jorgen Pedersen Gram (1850-1916) published his first important
mathematical paper while still a university student! Rather than teaching
mathematics at a university he became a research mathematician
employed by an insurance company. He published papers, gave lectures,
and won awards for his mathematical research. At the age of 65, Gram
was killed after being struck by a bicycle.

Jorgen Pedersen Gram
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Gram-Schmidt Algorithm

Suppose {v1, v2, . . . , vn} is a basis of an inner product space V . For the
frst step, we define w1 to be the normalized version of v1 ; that is,
w1 = v1/‖v1‖.

For an inductive definition, suppose that we have constructed an
orthonormal system w1,w2, . . . ,wk−1 whose span is the same as span
span{v1, v2, . . . , vk−1}. To get wk , subtract from vk its projection on the
span of {w1,w2, . . . ,wk−1}, and then normallize it.

The formula for this process is

wk =
vk −

∑k−1
j=1 〈vk ,wj〉wj

‖vk −
∑k−1

j=1 〈vk ,wj〉wj‖
(k = 2, 3, . . . , n).

In this algorithm, the vectors are normalized as we go along. The new
basis has the property that for each k ≤ n,

span{w1,w2, . . . ,wk} = span{v1, v2, . . . , vk}.
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Unnormalized Gram-Schmidt Algorith

Theorem

Let {v1, v2, . . . , vn} be a basis of a subspace S of an inner product space
V . Define z1, z2, . . . , zk , . . . , zn inductively by :

zk = vk −
k−1∑
j=1

〈vk , zj〉
〈zj , zj〉

zj (k = 1, 2, . . . , n).

Then z1, z2, . . . , zn is an orthogonal basis of S.
An orthonormal basis of V can be obtained by normalizing the zi ’s.

Starting from any basis of an inner product space V , we can construct an
orthonormal basis by the Gram-Schmidt process: Every
finite-dimensional inner product space has an orthonormal basis.
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An Advantage in Unnormalized Gram-Schmidt Algorithm

The main difference between the algorithms for the wk (normalized) and
zk (unnormalized) is that the vectors wk are normalized after each step,
where the zk are not. Hence, they remain unnormalized! Avoiding the
calculation of square root is another advantage.

For hand calculations, it is easier to construct an orthonormal basis by first
constructing an orthogonal basis and then normalizing the vectors all at
once at the end.

Next few slides are showing the Gram-Schmidt orthogonalization process
in plane and space.
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Gram-Schmidt process in plane
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Gram-Schmidt process in plane
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Gram-Schmidt process in plane
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Gram-Schmidt process in plane
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Gram-Schmidt process in plane
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Gram-Schmidt process in plane
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Gram-Schmidt process in space
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Gram-Schmidt process in space
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Gram-Schmidt process in space
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Gram-Schmidt process in space
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Gram-Schmidt process in space
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Gram-Schmidt process in space
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Gram-Schmidt process in space
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Gram-Schmidt process in space
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Generalized Gram-Schmidt Process

Let x1, x2, . . . , xs be a given vectors in V , not necessarily basis.

1 Step 1: Set k = 1.

2 Step 2: Compute zk = xk −
∑k−1

j=1
〈xk ,yj 〉

y j
.

3 Step 3: Compute yk := zk
‖zk‖ or 0 according as zk 6= 0 or zk = 0.

4 Step 4: If k < s, increase k by 1 and go to Step 2. Otherwise go to
Step 5.

5 Step 5: For i = 1, 2, . . . , s, the set Bi of all non-null vectors among
y1, y2, . . . , yi is an orthonormal basis of the span Si of {x1, x2, · · · , xi}.

If x1, x2, . . . , x` form an orthonormal set then yj = xj for j = 1, 2, . . . , `.
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Theorem

Let S be a subspace of a finite-dimensional inner product space V . Any
orthonormal subset of S can be extended to an orthonormal basis of S.

Proof. Let A = {x1, x2, . . . , x`} be an orthonormal subset of S . Extend A
to a spanning set {x1, x2, . . . , x`, x`+1, . . . , xs} of S by appending a basis.
Applying the generallized Gram-Schmidt process to {x1, x2, . . . , xs}, get
{y1, y2, . . . , ys}. Then the non-null vectors among y1, y2, . . . , ys form an
orthonormal basis of S which contains A = {x1, x2, . . . , x`}.

We note that the orthonormal basis obtained by the Gram-Schmidt
process from x1, x2, . . . , x` may be quite different from that obtained
from generallized Gram-Schmidt process (a rearrangement of
x1, x2, . . . , x`).
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Exercises

1 Consider R4 with the usual inner product. Extend{
1√
3

(1, 0, 1,−1)T ,
1√
7

(−2, 1, 1,−1)T
}

to an orthonormal basis by the method of the preceding theorem.

2 Consider the inner product 〈x , y〉 = yTAx on R3 where

A =

 2 1 −1
1 1 0
−1 0 3

 .

Find an orthonormal basis B of S := {(x1, x2, x3) : x1 + x2 + x3 = 0}
and then extend it to an orthonormal basis C of R3.
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QR-decomposition

Let A be an n × s matrix with rank p. Let y1, y2, . . . , ys be the vectors
obtained when generalized Gram-Schmidt process is applied to the
columns of A. For each k = 1, 2, . . . , s,

zk = A∗k −
k−1∑
j=1

〈A∗k , yj〉yj = ‖zk‖yk

and, yk := zk
‖zk‖ or 0 according as zk 6= 0 or zk = 0.

Hence k-th column of A is a linear combination of y1, y2, . . . , ys . That is,

A∗k = 〈A∗k , y1〉y1 + 〈A∗k , y2〉y2 + · · ·+ 〈A∗k , yk−1〉yk−1 + ‖zk‖yk .
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QR-decomposition

A = [y1 y2 · · · ys ]


‖z1‖ 〈A∗2, y1〉 〈A∗3, y1〉 · · · 〈A∗s , y1〉

0 ‖z2‖ 〈A∗3, y2〉 · · · 〈A∗s , y2〉
0 0 ‖z3‖ · · · 〈A∗s , y3〉
...

...
...

...
...

0 0 0 · · · ‖z3‖

 .

Let U be the s × s upper triangular matrix (uik) where

uik =


〈A∗k , yi 〉 if i < k
‖zk‖ if i = k

0 otherwise

Then A = PU.
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Also if Q is the submatrix of P formed by the non-null columns (the
columns of Q form an orthonormal basis, Q∗Q = Ip) and
R the submatrix of U formed by the corresponding rows, then (Q,R) is a
rank-factorization of A and Q∗Q = Ip.

When A is of full column rank (Q,R) = (P,U) is known as a
QR-decomposition of A.

Uniqueness. QR-factorization is unique if we insist that the diagonal
elements of R are real and positive, i.e., if A is of full column rank,
then there exist unique matrices Q and R such that A = QR,Q∗Q = I , R
is upper triangular and rii > 0 for all i .
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Exercises

1 Let x , y , u and v belong to Rn. Then show that

〈x + iy , u + iv〉 := uT x + vT y

is an inner product on the vector space Cn over R.
What is its connection with the canonical inner product on Cn?

2 Show that 〈x , y〉 = 0 for all y iff x = 0.
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Example on the space of random variables

Let V be the vector space of all real-valued random variables with mean 0
and finite variance, defined on a fixed probability space. Let F = R and
define 〈x , y〉 to be the covariance between x and y .

An orthogonal set is a set of pairwise uncorrelated random variables.
They form an orthonormal set if, further, each of them has unit
variance.

Suppose A = {x1, x2, . . . , xk} be an orthogonal set (not a basis) of
non-null vectors in V . Then for any x ∈ V ,

z := x −
k∑

j=1

〈x , xj〉
〈xj , xj〉

xj ,

the residual of x with respect to A. The sum
∑k

j=1
〈x ,xj 〉
〈xj ,xj 〉 is the

linear regression of x on x1, x2, . . . , xk .
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