Reg. No.							
----------	--	--	--	--	--	--	--

: 05.08.2013

Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal Odd Semester, 2013 - 2014 MA939 Functional Analysis Problem Sheet - 4

D_{a+a} , 00.00.0010	Last Data of Culturianian
Date : 02.08.2013	Last Date of Submission

Answer **ALL** questions.

1. Let I be the interval [0, 1] with the Lebesgue measure μ . Let X be the collection of all bounded measurable functions on I, and for $x \in X$ let

$$\|x\| := \sup_{s \in X} |x(s)|.$$

Prove that X is a Banach space.

- 2. Let X be the space as defined above. For $1 \le p < \infty$ and $x \in X$, whether X is a Banach space with respect to $||x||_p = \left(\int_0^1 |x(s)|^p ds\right)^{1/p}$ or not.
- 3. Prove that C[a, b] is a proper closed subspace of $L_{\infty}[a, b]$.
- 4. Prove that for a fixed point $t_0 \in [a, b]$, the map $x \mapsto |x(t_0)|, x \in C[a, b]$, is a seminorm on C[a, b].
- 5. Let $1 \le p < \infty$. Prove that the maps $x \mapsto \sum_{j=0}^{k} \|x^{(j)}\|_p$, $x \mapsto \max_{0 \le j \le k} \|x^{(j)}\|_p$ are norms on $C^k[a, b]$. Moreover, $C^{\infty}[a, b]$ is not Banach in the induced norm of $C^k[a, b]$.
- 6. Prove that $C^k[a, b]$ is not Banach with respect to any norm $\|.\|_p$ for $1 \le p \le \infty$ but it is Banach with respect to $\sum_{j=0}^k \|x^{(j)}\|_{\infty}$.
- 7. Prove that $C^k[a, b]$ is a proper dense subspace of $L_p[a, b]$ with $\|.\|_p$ for $1 \le p < \infty$.
- 8. There can be many Banach spaces which are completions of a given normed space. But, as far as their linear structure and norm structure are concerned, they are all the same. Find the completions of the following spaces:
 - (a) The space $(c_{00}, \|.\|_p)$, for $1 \le p < \infty$.
 - (b) The space $(c_{00}, \|.\|_{\infty})$.
 - (c) The space $(C(X), \|.\|_p)$, for $1 \le p < \infty$ and for every measurable subset X of \mathbb{R} .
 - (d) For $k \in \mathbb{N}$ and $1 \leq p < \infty$, the space $C^k[a, b]$ with respect to the norm $x \mapsto \sum_{j=0}^k \|x^{(j)}\|_p$, $x \in C^k[a, b]$. Note that $L_p[a, b]$ can be thought of as the Sobolev space $W^{0,p}[a, b]$ for $1 \leq p < \infty$.
- 9. Prove that the complement of a subspace L of a normed space X is either dense or empty.
- 10. If X is a finite dimensional normed space over \mathbb{R} and E is a convex subset of X containing 0, then prove that spanE = X iff E° is nonempty.