Reg. No.							
----------	--	--	--	--	--	--	--

Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal Odd Semester, 2013 - 2014 MA939 Functional Analysis Problem Sheet - 10

Date : 11.09.2013

Last Date of Submission : 16.12.2013

Answer **ALL** questions.

- 1. For every $p \ge 1$, prove the following statements.
 - (a) ℓ_p is linearly isometric to a subspace of $L_p[0,\infty)$.
 - (b) ℓ_p is linearly isometric to a subspace of $L_p[0, 1]$.
- 2. In C[0,1], M_1 = all constant functions, M_2 = all functions f such that f(0) = 0, M_3 = all functions f such that f(0) = f(1) = 0.
 - (a) Show that M_1, M_2 , and M_3 are closed subspaces of C[0, 1].
 - (b) Is C[0,1] the direct sum of the three subspaces?
- 3. Let B_1 and B_2 be the closed unit balls of $(X, \|.\|_1)$ and $(X, \|.\|_2)$ respectively. Suppose two norms $\|.\|_1$ and $\|.\|_2$ are equivalent, then prove that B_1 and B_2 are homeomorphic.
- 4. Prove the following statements.
 - (a) Any bounded linear operator $T : c_{00} \to c_{00}$ can be represented by a columnfinite infinite matrix whose entries k_{ij} are scalars with $|k_{ij}| \le \alpha, \forall i, j \ge 1$ and some $\alpha \in \mathbb{R}$.
 - (b) Any bounded linear operator $T : \ell_1 \to \ell_1$ is represented by an infinite matrix (k_{ij}) in the sense that $(Tx)_i = \sum_{j=1}^{\infty} k_{ij} x_j$ with $||T|| = \sup_j \sum_{i=1}^{\infty} |k_{ij}|$, the supremum of the column sums of the matrix $(|k_{ij}|)$.
 - (c) Any bounded linear operator $T : \ell_{\infty} \to \ell_{\infty}$ is represented by an infinite matrix (k_{ij}) in the sense that $(Tx)_i = \sum_{j=1}^{\infty} k_{ij}x_j$ with $||T|| = \sup_i \sum_{j=1}^{\infty} |k_{ij}|$, the supremum of the row sums of the matrix $(|k_{ij}|)$.
 - (d) Let X be a sequence space ℓ_p $(1 \le p < \infty)$ or c_0 . Any bounded linear operator $T: X \to X$ is represented by an infinite matrix (k_{ij}) in the sense that $(Tx)_i = \sum_{j=1}^{\infty} k_{ij} x_j$.
- 5. Prove or disprove. Every bounded linear operator $T: c \to c$ can be represented by an infinite matrix (k_{ij}) in the sense that for each $x \in c$, $(Tx)_i = \sum_{j=1}^{\infty} k_{ij}x_j$, the series being convergent for all i, x.